Resolving of Intersection Types in Java

Martin Plümicke

University of Cooperative Education
Stuttgart/Horb

5. Mai 2008
Overview

Motivation/Tool demonstration

Method calls with intersection types
 Semantics
 First approach
 The algorithm

Principal Typing

Conclusion and Outlook
Motivation/Tool demonstration
Method calls with intersection types
Principal Typing
Conclusion and Outlook

Purpuse:
Byte-code generation for methods with intersection types

Resolving of Intersection Types in Java
Purpose: Byte-code generation for methods with intersection types
Semantics of type–inferred Java programs

- control-structures have the same semantics as in standard Java
- method calls differ, as there are intersection types
control-structures have the same semantics as in standard Java

method calls differ, as there are intersection types

... m (...) {
 ... receiver.method(t1, ..., tn); ... }

method: $ty_1 \times \ldots \times ty_n \rightarrow ty_0 \ & \ldots \ & ty'_1 \times \ldots \times ty'_n \rightarrow ty'_0$

has an intersection type
Semantics of type–inferred Java programs

- control-structures have the same semantics as in standard Java
- method calls differ, as there are intersection types

```java
... m ( ... ) {
    ... receiver.method(t1, ..., tn); ... }
```

- method: $ty_1 \times \ldots \times ty_n \rightarrow ty_0 \ & \ldots \ & \ ty'_1 \times \ldots \times ty'_n \rightarrow ty'_0$
 has an intersection type

- t_1, \ldots, t_n have unambiguous types during execution
- by the argument types the typing of method is determined
- method is executed with the determined typing.
Semantics example

class OL {
 Integer m(x) { return x + x; } //Integer → Integer
 Boolean m(x) { return x || x; } //Boolean → Boolean
}

class Main {
 main(x) { // Integer → Integer & Boolean → Boolean
 ol;
 ol = new OL();
 return ol.m(x);
 }
}
...
Main rec = new Main();
Integer r = rec.main(x);
Semantics example

class OL {
 Integer m(x) { return x + x; } //Integer → Integer
 Boolean m(x) { return x || x; } //Boolean → Boolean
}

class Main {
 main(x) { // Integer → Integer & Boolean → Boolean
 ol;
 ol = new OL();
 return ol.m(x);
 }
}

...
Main rec = new Main();
Integer r = rec.main(x); main:Integer → Integer is determined
Code generation for method with intersection types

- Byte-code allows no intersection types
- First approach: generate for each element of the intersection type an own method
Code generation for method with intersection types

- Byte-code allows no intersection types
- First approach: generate for each element of the intersection type an own method

Result for Main:

```java
class Main {
    Integer main(Integer x) {
        OL ol;
        ol = new OL();
        return ol.m(x); }

    Boolean main(Boolean x) {
        OL ol;
        ol = new OL();
        return ol.m(x);
    }
}
Example: Multiplication of matrices I

class Matrix extends Vector<Vector<Integer>> {
    mul(m) {
        ret = new Matrix();
        int i = 0;
        while(i < size()) {
            v1; v1 = this.elementAt(i);
            v2; v2 = new Vector<Integer>();
            int j = 0;
            while(j < v1.size()) {
                int erg = 0;
                int k = 0;
                while(k < v1.size()) {
                    erg = erg + v1.elementAt(k)
                        * m.elementAt(k).elementAt(j); k++;
                }
                v2.addElement(new Integer(erg)); j++;
            }
            ret.addElement(v2); i++;
        }
        return ret;
    }
}
Example: Multiplication of matrices II

\[
\text{mul}: \&_{\beta,\alpha}(\beta \rightarrow \alpha),
\]

where

\[
\beta \leq^* \text{Vector}\langle ? \text{extends Vector}\langle ? \text{extends Integer} \rangle \rangle, \\
\text{Matrix} \leq^* \alpha
\]
Example: Multiplication of matrices II

mul: $\&_{\beta,\alpha}(\beta \rightarrow \alpha)$,

where

$\beta \leq^* \text{Vector}\langle \text{?? extends Vector}\langle \text{? extends Integer} \rangle \rangle$, \\
$\text{Matrix} \leq^* \alpha$

class Matrix extends Vector<Vector<Integer>> { 
    Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... } 
    Matrix mul(Vector<? extends Vector<Integer>> m) { ... } 
    Matrix mul(Vector<Vector<Integer>> m) { ... } 
    ... 
    Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... } 
    ... 
    Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... } 
}
Example: Multiplication of matrices II

\[ \text{mul}: \&_{\beta,\alpha}(\beta \to \alpha), \]

where

\[ \beta \leq^* \text{Vector}\langle? \text{extends Vector}\langle? \text{extends Integer}\rangle\rangle, \]
\[ \text{Matrix} \leq^* \alpha \]

class Matrix extends Vector<Vector<Integer>> {
    Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
    Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
    Matrix mul(Vector<Vector<Integer>> m) { ... }
    ... 
    Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
    ...
    Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... }
}

Not a correct Java program
Group elements of the intersection type

Idea:

1. Group all elements which
   - executes the same code
   - have a common supertype
2. Generate new methods only for the groups
Group elements of the intersection type

Idea:
1. Group all elements which
   - executes the same code
   - have a common supertype
2. Generate new methods only for the groups

Code-execution: Callgraph of the method declarations

\[ CG( cl.m : \tau ) \]

Callgraph of the method \( m \) in the class \( cl \) with the typing \( \tau \).
Group elements of the intersection type

**Idea:**
1. Group all elements which
   - executes the same code
   - have a common supertype
2. Generate new methods only for the groups

**Code–execution:** Callgraph of the method declarations

\[ CG(\; cl.m : \tau ) \]

Callgraph of the method \( m \) in the class \( cl \) with the typing \( \tau \).

**Supertype of function types:** Subtyping ordering

\[ \theta_i \leq_\ast \theta'_i, \theta \leq_\ast \theta' \Rightarrow \]

\[ \theta_1 \times \ldots \times \theta_n \to \theta' \leq_\ast \theta'_1 \times \ldots \times \theta'_n \to \theta \]
Example class OL 1

Callgraph

\[ CG(\text{Main.main} : \text{Integer} \rightarrow \text{Integer}) = \text{Main.main} : \text{Integer} \rightarrow \text{Integer} \& \text{Boolean} \rightarrow \text{Boolean} \]

\[ CG(\text{Main.main} : \text{Boolean} \rightarrow \text{Boolean}) = \text{Main.main} : \text{Integer} \rightarrow \text{Integer} \& \text{Boolean} \rightarrow \text{Boolean} \]

\[ OL.m : \text{Integer} \rightarrow \text{Integer} \]

\[ Ol.m : \text{Boolean} \rightarrow \text{Boolean} \]
Example class OL I

Callgraph

\[ CG(\text{Main.main: Integer} \rightarrow \text{Integer}) = \text{Main.main: Integer} \rightarrow \text{Integer} \]
\[ CG(\text{Main.main: Boolean} \rightarrow \text{Boolean}) = \text{Main.main: Boolean} \rightarrow \text{Boolean} \]
\[ \text{OL.m: Integer} \rightarrow \text{Integer} \]
\[ \text{Ol.m: Boolean} \rightarrow \text{Boolean} \]

Supertype

\[ \text{Integer} \rightarrow \text{Integer} \]
\[ \text{Boolean} \rightarrow \text{Boolean} \]
Example class OL II

**Code generation**

```java
class Main {
 Integer main(Integer x) {
 OL ol;
 ol = new OL();
 return ol.m(x); }

 Boolean main(Boolean x) {
 OL ol;
 ol = new OL();
 return ol.m(x);
 }
}
```

**Code is unchanged in comparison to the first approach**
Example class **Matrix I**

**Callgraph** \( CG(\text{Matrix.mul}: \tau) \) for all \( \tau \)

\[
\begin{align*}
\text{Matrix.mul}: \quad & \text{Vector<}\tau\text{Vector<}\tau\text{Int}> \rightarrow \text{Matrix} & \\
& \text{Vector<}\tau\text{Vector<}\tau\text{Int}> \rightarrow \text{Matrix} & \\
& \quad \& \ldots \& \\
& \quad \text{Matrix} \rightarrow \text{Vector<}\tau\text{Vector<}\tau\text{Int}> \\
\text{Vector<}\tau\text{.size}: & \rightarrow \text{int} & \\
\text{Vector<}\tau\text{.elementAt} & \rightarrow \tau & \\
\text{Vector<}\tau\text{.addElement}: & \tau \rightarrow \text{void}
\end{align*}
\]
Example class `Matrix` l

Callgraph $CG(\text{Matrix.mul}: \tau)$ for all $\tau$

```
Matr\text{ix.mul}: \text{Vector}\langle ? \text{Vector}\langle ? \text{Int} \rangle \rangle \rightarrow \text{Matrix} &
\text{Vector}\langle ? \text{Vector}\langle \text{Int} \rangle \rangle \rightarrow \text{Matrix} &
& \ldots &
\text{Matrix} \rightarrow \text{Vector}\langle ? \text{Vector}\langle ? \text{Int} \rangle \rangle
```

```
\text{Vector}\langle T \rangle .\text{size}: \rightarrow \text{int} \quad \text{Vector}\langle T \rangle .\text{elementAt} \rightarrow T \quad \text{Vector}\langle T \rangle .\text{addElement}: T \rightarrow \text{void}
```

Supertype:

```
\text{Vector}\langle ? \text{extends Vector}\langle ? \text{extends Integer} \rangle \rangle \rightarrow \text{Matrix}
```
Example class Matrix II

Code generation (**only one method!**)  

Matrix \texttt{mul}(\texttt{Vector<? extends Vector<? extends Integer>> m}) \{  
    Matrix ret = new Matrix();  
    int i = 0;  
    while(i < size()) \{  
        Vector<Integer> v1 = this.elementAt(i);  
        Vector<Integer> v2 = new Vector<Integer>();  
        int j = 0;  
        while(j < v1.size()) \{  
            int erg = 0;  
            int k = 0;  
            while(k < v1.size()) \{  
                erg = erg + ...; k++;  
            \}  
            v2.addElement(new Integer(erg)); j++;  \}  
        ret.addElement(v2); i++;  \}  
    return ret; \}\}
The Algorithm

Input: A Java program \( p \) with inferred (intersection) types.
Output: A Java program \( p' \), where the methods have standard Java types. The semantics of \( p \) and \( p' \) are equal.

1. Step: For every class \( cl \) in \( p \) consider for each method \( m \) the intersection type \( ty_m \):
   - Build the callgraph \( CG(cl.m : \tau) \) for each function type \( \tau \) of the intersection type \( ty_m \).
   - Group all elements \( \tau \) of \( ty_m \), where \( CG(cl.m : \tau) \) is the same graph and there is a supertype.

2. Step: Determine the supertype of the respective group.

3. Step: Generate for each group of function types the corresponding Java code with the supertype as standard typing in \( p' \).
Definition [Damas, Milner 1982]:

“A type-scheme for a declaration is a principal type-scheme, if any other type-scheme for the declaration is a generic instance of it.”
Definition [Damas, Milner 1982]:

“A type-scheme for a declaration is a principal type-scheme, if any other type-scheme for the declaration is a generic instance of it.”

Generalization to the Java type system (old definition)

“An intersection type-scheme for a declaration is a principal type-scheme, if any (non–intersection) type-scheme for the declaration is a subtype of a generic instance of one element of the intersection type-scheme.”
Example principal typing I

```java
import java.util.Vector;
import java.util.Stack;

class Put {
 <T> putElement(T ele, Vector<T> v) {
 v.addElement(ele);
 }

 <T> putElement(T ele, Stack<T> s) {
 s.push(ele);
 }

 main(ele, x) {
 x.putElement(ele, x);
 }
}
```
Example principal typing II

The inferred intersection type:

\[ \text{main} : T \times \text{Vector}<T> \rightarrow \text{void} \& T \times \text{Stack}<T> \rightarrow \text{void}. \]

This is a principal type.
But there is another principal type:

\[ \text{main} : T \times \text{Vector}<T> \rightarrow \text{void}. \]
Example principal typing II

The inferred intersection type:

\[ \text{main} : T \times \text{Vector}\langle T \rangle \rightarrow \text{void} \land T \times \text{Stack}\langle T \rangle \rightarrow \text{void}. \]

This is a principal type.
But there is another principal type:

\[ \text{main} : T \times \text{Vector}\langle T \rangle \rightarrow \text{void}. \]

Correct but not meaningful!!
Refined definition of *Principal typing*

“An intersection type-scheme for a declaration is a *principal type-scheme*, if any (non–intersection) type-scheme $\theta$ for the declaration is a subtype of a generic instance of one element of the intersection type-scheme $\tau$ and $\theta$ and $\tau$ have the same callgraph.”
Example Put (cont.)

\[ CG(\text{Put.main}: T \times \text{Vector}<T> \rightarrow \text{void}) \neq CG(\text{Put.main}: \text{Integer} \times \text{Stack}<\text{Integer}> \rightarrow \text{void}) \]

\[ = \]

\[ \text{Put.main}: T \times \text{Vector}<T> \rightarrow \text{void} \]
\[ & T \times \text{Stack}<T> \rightarrow \text{void} \]

\[ \downarrow \]

\[ \text{Put.putElement}: T \times \text{Vector}<T> \rightarrow \text{void} \]

\[ \text{main}: T \times \text{Vector}<T> \rightarrow \text{void} \]

is no principal type, but

\[ \text{main}: T \times \text{Vector}<T> \rightarrow \text{void} \& T \times \text{Stack}<T> \rightarrow \text{void} \]

\[ \text{main}: T \times \text{Vector}<T> \rightarrow \text{void} \]

is a principal type.
Conclusion and Outlook

Conclusion

- Semantics for Java methods with intersection types
- Resolving algorithm of intersection types
- Code generation for methods with intersection types possible
- (Redefined) Principal type property
Conclusion and Outlook

Conclusion

- Semantics for Java methods with intersection types
- Resolving algorithm of intersection types
- Code generation for methods with intersection types possible
- (Redefined) Principal type property

Outlook

At the moment: Type inference algorithm infers typings, which are later erased as subtypes by the resolving algorithm.

Purpose: Type inference algorithm infers only supertypes, such that no typings are erased in the resolving algorithm.