Type unification for structural types in Java

Martin Plümicke

Baden-Wuerttemberg Cooperative State University
Stuttgart/Horb

June 26, 2016
Overview

Introduction

Motivation

Type inference algorithm

Type unification
 The type unification problem
 The type unification algorithm
 Type unification rules

Example

Summary
 Conclusion
 Future work
The Java-TX System (basic idea)

- Type inference for Java in similar way as in functional programming languages (Haskell, ocaml, sml, ...)

No type annotations necessary, however static typing
The Java-TX System (basic idea)

- **Type inference for Java** in similar way as in functional programming languages (Haskell, ocaml, sml, ...)

 No type annotations necessary, however static typing

- Type inference in functional programming languages is reduced to ordinary unification (Damas/Miler 1982 ⇒ Robinson 1965)
The Java-TX System (basic idea)

- Type inference for Java in similar way as in functional programming languages (Haskell, ocaml, sml, ...)

 No type annotations necessary, however static typing

- Type inference in functional programming languages is reduced to ordinary unification (Damas/Miler 1982 ⇒ Robinson 1965)

- Java type inference is reduced to type unification
Java type unification

For two type terms θ_1 and θ_2 a substitution σ is demanded such that:

$$\sigma(\theta_1) \leq^* \sigma(\theta_2).$$
Java type unification

For two type terms θ_1 and θ_2 a substitution σ is demanded such that:

$$\sigma(\theta_1) \leq^* \sigma(\theta_2).$$

UNIF’ 04: Java type terms without wildcards (PIZZA’s type system)
Java type unification

For two type terms θ_1 and θ_2 a substitution σ is demanded such that:

$$\sigma(\theta_1) \leq^* \sigma(\theta_2).$$

UNIF’ 04: Java type terms without wildcards (PIZZA’s type system)

UNIF’ 07: Java type terms with wildcards (Java 5.0’s type system)
Eclipse plugin
class A {
 m (v) {
 return v.elementAt(0);
 }
}
Motivation

Type inference example

class A {
 m (v) {
 return v.elementAt(0);
 }
}

No type inference result for m
import java.util.Vector;

class A {
 m (v) {
 return v.elementAt(0);
 }
}
import java.util.Vector;

class A {

 m (v) {
 return v.elementAt(0);
 }
}

Result: m : Vector<T> → T (Nominal type).
Motivation

Type inference example

class A {
 m (v) {
 return v.elementAt(0);
 }
}

Could be inferred a structural type?
Motivation

Type inference example

```java
interface I<T> { T elementAt(int x); }

class A {
    m (v) {
        return v.elementAt(0);
    }
}

Result: m : I<T> → T (Structural type).
```
Motivation

Costs

Type unification is not unitary, but finitary

There is a totally correct algorithm. But the number of solution grows exponentially:

\[n^m \]

\(n \): Number of classes (types) in the environment

\(m \): Number of the types in the input terms
Type inference algorithm

- **TYPE** collects the type constraints.
- **construct** builds the interfaces, that represent the structural types.
- **solve** unifies the constraints by the type unification algorithm.
Type inference algorithm

- **TYPE** collects the type constraints.

- **construct** builds the interfaces, that represent the structural types.

- **solve** unifies the constraints by the type unification algorithm.
The type unification problem

Definitions:

\(\theta \leq^* \theta' \): \(\theta \) is a subtype of \(\theta' \).

\(\theta < \theta' \): \(\theta \) and \(\theta' \) should be unified, such that \(\sigma(\theta) \leq^* \sigma(\theta') \).

\(\theta \equiv \theta' \): \(\theta \) and \(\theta' \) should be unified, such that \(\sigma(\theta) = \sigma(\theta') \).
The type unification problem

Definitions:

\(\theta \leq^* \theta' \): \(\theta \) is a subtype of \(\theta' \).

\(\theta < \theta' \): \(\theta \) and \(\theta' \) should be unified, such that \(\sigma(\theta) \leq^* \sigma(\theta') \).

\(\theta \cong \theta' \): \(\theta \) and \(\theta' \) should be unified, such that \(\sigma(\theta) = \sigma(\theta') \).

Type unification problem:

For a given set of type term pairs

\[
\{ \theta_1 < \theta_1', \ldots, \theta_n < \theta_n' \}
\]

a unifier (substitution) \(\sigma \) is demanded, such that

\[
\sigma(\theta_i) \leq^* \sigma(\theta_i')
\]
Why is type unification not unitary?

This is caused by pairs like:

\[a < \theta' \]

The results are

\[\{ a \mapsto \theta \mid \theta \leq^* \theta' \} \].
Type Unification with structural types

Pairs like

\[a < \theta \]

are themselves results, that means

all subtypes of \(\theta' \) (not explicitly given)

are results.
The type unification algorithm

Base: An Efficient Unification Algorithm [Martelli, Montanari 1982]
The type unification algorithm

Base: An Efficient Unification Algorithm [Martelli, Montanari 1982]

The algorithm \textbf{TUnify}(C) is given by the following type unification rules. Application the most often as possible.

If \(C\) is finally in solved form (all elements has the form \(T/\theta\), \(T/\theta\), or \(\theta/T\), where \(T\) is a type variable and \(\theta\) is a type term) then \(C\) is the result, otherwise the algorithm fails.
The type unification algorithm

Base: An Efficient Unification Algorithm [Martelli, Montanari 1982]

The algorithm **TUnify**(C) is given by the following type unification rules application the most often as possible.

If C is finally in solved form (all elements has the form \(T \equiv \theta \), \(T \prec \theta \), or \(\theta \prec T \), where \(T \) is a type variable and \(\theta \) is a type term) then C is the result, otherwise the algorithm fails.
Type unification rules

reduce

\[
C \cup \{ D<\theta_1, \ldots, \theta_n> \ll D'<\theta'_1, \ldots, \theta'_n> \}
\]

\[
C \cup \{ \theta_1 \doteq \theta'_1, \ldots, \theta_n \doteq \theta'_n \}
\]

where \(D<T_1, \ldots, T_n> \leq^* D'<T_1, \ldots, T_n> \) with \(T_i \) are type variables

adapt1

\[
C \cup \{ D<\theta_1, \ldots, \theta_n> \ll D'<\theta'_1, \ldots, \theta'_m> \}
\]

\[
C \cup \{ D'<\tilde{\theta}'_1, \ldots, \tilde{\theta}'_m>[T_i \mapsto \theta_i \mid 1 \leq i \leq n] \doteq D'<\theta'_1, \ldots, \theta'_m> \}
\]

where \((D<T_1, \ldots, T_n> \leq^* D'<\tilde{\theta}'_1, \ldots, \tilde{\theta}'_m>)\) with \(T_i \) are type variables
adapt2

\[C \cup \{ D^{<\theta_1, \ldots, \theta_n>} < S_1, S_1 < S_2, \ldots, S_{k-1} < S_k, S_k < D'^{<\theta'_1, \ldots, \theta'_m>}, S_k \} \cup \{ \sigma(D^{<\theta_1, \ldots, \theta_n>}) < S_1, S_1 < S_2, \ldots, S_{k-1} < S_k, S_k < \sigma(D'^{<\theta'_1, \ldots, \theta'_m>}) \} \cup \sigma \]

where

- \(k \geq 1 \)
- \(S_i \in TV \) and
- \((D^{<\theta_1, \ldots, \theta_n>} \not\leq D'^{<\theta'_1, \ldots, \theta'_m>}) \) but
 \((D^{<T_1, \ldots, T_n>} \leq D'^{<\tilde{\theta}'_1, \ldots, \tilde{\theta}'_m>}) \) with \(T_i \in TV \)
- \(\sigma = \text{Unify}(\{ D'^{<\tilde{\theta}'_1, \ldots, \tilde{\theta}'_m>}[T_i \mapsto \theta_i \mid 1 \leq i \leq n] \doteq D'^{<\theta'_1, \ldots, \theta'_m>} \}) \)
erase1 \[\frac{C \cup \{ \theta \leq \theta' \}}{C} \] \quad \theta \leq^* \theta'

erase2 \[\frac{C \cup \{ \theta \equiv \theta' \}}{C} \] \quad \theta = \theta'

swap \[\frac{C \cup \{ \theta \equiv T \}}{C \cup \{ T \equiv \theta \}} \] \quad \theta \notin TV, \ T \in TV

subst \[\frac{C \cup \{ T \equiv \theta \}}{C[T \mapsto \theta] \cup \{ T \equiv \theta \}} \] \quad T \in TV \text{ and } T \text{ occurs in } C \text{ but not in } \theta

refl \[\frac{C \cup \{ \theta \leq T_1, T_1 \leq T_2, \ldots, T_{n-1} \leq T_n, T_n \leq \theta \}}{C \cup \{ T_i = \theta \mid 1 \leq i \leq n \}} \] \quad \theta \notin TV, \ T_i \in TV
Example

class A {
 mt(x, y, z) {
 return x.sub(y).add(z);
 }
}

The result of the type inference algorithm

```java
interface Sub<R, T> { R sub(T x); }
interface Add<R, T> { R add(T x); }

class A <\nu_1,\nu_3,\nu_4,\nu_6>
    [\nu_3 \text{ extends } \nu_5,
     \nu_4 \text{ extends } \nu_7,
     \nu_1 \text{ extends } \text{Sub}<\nu_2,\nu_5>,
     \nu_2 \text{ extends } \text{Add}<\nu_6,\nu_7>]
    {
        \nu_6 \text{ mt}(\nu_1 \text{ x}, \nu_3 \text{ y}, \nu_4 \text{ z})
        {
            \text{return } \nu_1 \text{ x}.\text{sub}(\nu_3 \text{ y}).\text{add}(\nu_4 \text{ z});
        }
    }
```
The result of the type inference algorithm

interface Sub<R, T> { R sub(T x); }

interface Add<R, T> { R add(T x); }

class A <ν₁,ν₃,ν₄,ν₆>

 [ν₃ extends ν₅,
 ν₄ extends ν₇,
 ν₁ extends Sub<ν₂,ν₅>,
 ν₂ extends Add<ν₆,ν₇>]

 {ν₆ mt(ν₁ x, ν₃ y, ν₄ z) {
 return x.sub(y).add(z);
 }}

The application of solve (unification) changes nothing, as
{ ν₃ < ν₅, ν₄ < ν₇, ν₁ < Sub<ν₂,ν₅>, ν₂ < Add<ν₆,ν₇> } is in solved form.
Interface implementation: Sub and Add

class myInteger extends Sub<myInteger, myInteger>,
 Add<myInteger, myInteger> {

 Integer i;

 myInteger sub(myInteger x) {
 return new myInteger(i - x.i);
 }

 myInteger add(myInteger x) {
 return new myInteger(i + x.i);
 }
}
class A $<\nu_1, \nu_3, \nu_4, \nu_5>$
 $[\nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub}<\nu_2, \nu_5>, \nu_2 < \text{Add}<\nu_6, \nu_7>]$\{
 \nu_6 \text{ mt}(\nu_1 \ x, \ \nu_3 \ y, \ \nu_4 \ z) \{
 \text{return} \ x.\text{sub}(y).\text{add}(z);
 \}
 \}
}\}

class Main \{

 main() \{
 \text{return} \ \text{new} \ A<>()
 .\text{mt}(\text{new} \ \text{myInteger}(2),
 \text{new} \ \text{myInteger}(1),
 \text{new} \ \text{myInteger}(3));
 \}
 \}
\}
The result of TYPE and construct

\[
C = \{ ~ \nu_3 < \nu_5, \\
 \nu_4 < \nu_7, \\
 \nu_1 < \text{Sub}<\text{myInteger}, \nu_5>, \\
 \nu_2 < \text{Add}<\nu_6, \nu_7>, \\
 \text{myInteger} < \nu_1, \\
 \text{myInteger} < \nu_3, \\
 \text{myInteger} < \nu_4 \} \\
\]

is to be unified.
Unification

\[C = \{ \nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub}\langle\text{myInteger}, \nu_5\rangle, \nu_2 < \text{Add}\langle\nu_6, \nu_7\rangle, \\
\text{myInteger} < \nu_1, \text{myInteger} < \nu_3, \text{myInteger} < \nu_4 \} \]
Unification

\[C = \{ \nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub<myInteger,} \nu_5>, \nu_2 < \text{Add<} \nu_6, \nu_7>, \text{myInteger} < \nu_1, \text{myInteger} < \nu_3, \text{myInteger} < \nu_4 \} \]

With the *adapt2*-rule follows from \text{myInteger} < \nu_1, \nu_1 < \text{Sub<} \nu_2, \nu_5>:

\[
\begin{align*}
\text{myInteger} < \nu_1, \nu_1 & < \text{Sub<myInteger, myInteger>}, \\
\nu_2 & \doteq \text{myInteger}, \nu_5 & \doteq \text{myInteger}.
\end{align*}
\]
Unification

\[C = \{ \nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub}<\text{myInteger},\nu_5>, \nu_2 < \text{Add}<\nu_6,\nu_7>, \text{myInteger} < \nu_1, \text{myInteger} < \nu_3, \text{myInteger} < \nu_4 \} \]

With the \textit{adapt2}-rule follows from \text{myInteger} < \nu_1, \nu_1 < \text{Sub}<\nu_2,\nu_5>:

\[
\begin{align*}
\text{myInteger} < \nu_1, & \quad \nu_1 < \text{Sub}<\text{myInteger},\text{myInteger}>, \\
\nu_2 & \triangleq \text{myInteger}, \quad \nu_3 & \triangleq \text{myInteger}.
\end{align*}
\]

From this follows with the \textit{subst}-rule \text{myInteger} < \text{Add}<\nu_6,\nu_7> and with the \textit{adapt1}-rule: \text{Add}<\text{myInteger},\text{myInteger}> \triangleq \text{Add}<\nu_6,\nu_7>.
Unification

\[C = \{ \nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub<myInteger,}\nu_5>, \nu_2 < \text{Add<\nu_6,}\nu_7>, \\
\text{myInteger < } \nu_1, \text{myInteger < } \nu_3, \text{myInteger < } \nu_4 \} \]

With the \textit{adapt2-rule} follows from \text{myInteger < } \nu_1, \nu_1 < \text{Sub<}\nu_2,\nu_5>:

\[\text{myInteger < } \nu_1, \nu_1 < \text{Sub<myInteger,myInteger>,} \]
\[\nu_2 \doteq \text{myInteger}, \nu_5 \doteq \text{myInteger}. \]

From this follows with the \textit{subst-rule} \text{myInteger < } \text{Add<\nu_6,\nu_7>} and with the \textit{adapt1-rule}: \text{Add<myInteger,myInteger> \doteq Add<\nu_6,\nu_7>}.

With the \textit{reduce-} and \textit{swap-rule} follows: \nu_6 \doteq \text{myInteger}, \nu_7 \doteq \text{myInteger}
Unification

\[C = \{ \nu_3 < \nu_5, \nu_4 < \nu_7, \nu_1 < \text{Sub}<\text{myInteger},\nu_5>, \nu_2 < \text{Add}<\nu_6,\nu_7>, \text{myInteger} < \nu_1, \text{myInteger} < \nu_3, \text{myInteger} < \nu_4 \} \]

With the adapt2-rule follows from \text{myInteger} < \nu_1, \nu_1 < \text{Sub}<\nu_2,\nu_5>:

\[
\text{myInteger} < \nu_1, \nu_1 < \text{Sub}<\text{myInteger},\text{myInteger}>, \nu_2 \doteq \text{myInteger}, \nu_5 \doteq \text{myInteger}.
\]

From this follows with the subst-rule \text{myInteger} < \text{Add}<\nu_6,\nu_7> and with the adapt1-rule: \text{Add}<\text{myInteger},\text{myInteger}> \doteq \text{Add}<\nu_6,\nu_7>.

With the reduce- and swap-rule follows: \nu_6 \doteq \text{myInteger}, \nu_7 \doteq \text{myInteger}

With the subst-rule follows

\[
\text{myInteger} < \nu_3, \nu_3 < \text{myInteger}, \text{myInteger} < \nu_4, \nu_4 < \text{myInteger}
\]

and from this with the refl-rule:

\[
\nu_3 \doteq \text{myInteger}, \nu_4 \doteq \text{myInteger}.
\]
The result of solve

The result of solve is given as:

\[
\{ \text{myInteger} \triangleq \nu_1, \nu_1 \triangleq \text{Sub<myInteger,myInteger>}, \\
\nu_2 \triangleq \text{myInteger}, \nu_5 \triangleq \text{myInteger}, \nu_6 \triangleq \text{myInteger}, \\
\nu_7 \triangleq \text{myInteger}, \nu_3 \triangleq \text{myInteger}, \nu_4 \triangleq \text{myInteger} \}
\]
The result of solve

The result of solve is given as:

\[
\{ myInteger < \nu_1, \nu_1 \prec Sub<myInteger, myInteger>, \\
\nu_2 \preceq myInteger, \nu_5 \preceq myInteger, \nu_6 \preceq myInteger, \\
\nu_7 \preceq myInteger, \nu_3 \preceq myInteger, \nu_4 \preceq myInteger \}
\]

class Main [myInteger extends \nu_1, \\
\nu_1 extends Sub<myInteger, myInteger>] {

 myInteger main() {
 return new A<>()
 .mt(new myInteger(2),
 new myInteger(1),
 new myInteger(3));
 }
}
Soundness and Completeness Theorem

Soundness: If a substitution σ is a solution of a constraint set C then σ is also a solution of $\text{TUnify}(C)$.
Soundness and Completeness Theorem

Soundness: If a substitution σ is a solution of a constraint set C then σ is also a solution of $\text{TUnify}(C)$.

Completeness: Let

- C be a set of constraints,
- σ' a solution of C and
- $\sigma = \{ T \mapsto ty \mid T \vdash ty \in \text{TUnify}(C) \}$

Then there are substitutions σ'' and σ_{rest}, such that

$$\sigma' = \sigma'' \circ \left((\sigma_{rest} \circ \sigma) \cup \sigma_{rest} \right)$$

(σ_{rest} is a solution of the remaining pairs $T \preceq ty$ and $ty \preceq T$)
Related Work

Ancona, Damiani, Drossopoulou, Zucca: *Polymorphic bytecode: Compositional compilation for Java-like languages*, POPL '05

- no type inference for argument and return types
- compilation to polymorphic bytecode with type constraints
- linking with constraint solving
We have presented a type unification for Java structural types.

- Extension of [Martelli and Montanari 1982 and Pluemicke 2007]
- type unification is unitary
- separate compilation of Java classes without relying on type informations of other classes.
- infers structural types, given as generated interfaces
Future work

- Complete prototypical implementation (Eclipse-PlugIn)
- Optimize unification:
 - Nominal types: different solutions
 - Structural types: one solution