Typeless Programming in Java 5 and 7

Martin Plümicke

Baden-Württemberg Cooperative State University Stuttgart/Horb

20. September 2010

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction

Overview

Introduction

Type inference algorithm for Java 5

Types Type unification Type inference algorithm

Java with intersection types

First approach The algorithm

Closures in Java 7

The language The type-system Type inference

回 と く ヨ と く ヨ と

Introduction

Introduction

Extensions of the Java type-system

 parametrized types, type variables, type terms, wildcards e.g.

Vector<? extends AbstractList<? super Integer>>

イロト イヨト イヨト イヨト

Introduction

Introduction

Extensions of the Java type-system

 parametrized types, type variables, type terms, wildcards e.g.

Vector<? extends AbstractList<? super Integer>>

Complex typings

- Often it is not obvious, which are the *best* types for methods and variables
- Sometimes principal types in Java are *intersection types*, which are not expressible (contradictive of writing re-usable code)

Introduction

Introduction

Extensions of the Java type-system

 parametrized types, type variables, type terms, wildcards e.g.

Vector<? extends AbstractList<? super Integer>>

Complex typings

- Often it is not obvious, which are the *best* types for methods and variables
- Sometimes principal types in Java are *intersection types*, which are not expressible (contradictive of writing re-usable code)

 \implies Developing a type-inference-system, which determines principal types

Introduction

Example: Multiplication of matrices

```
class Matrix extends Vector<Vector<Integer>> {
    Matrix mul(Matrix m) {
        Matrix ret = new Matrix();
        int i = 0:
        while(i <size()) {</pre>
            Vector<Integer> v1 = this.elementAt(i);
            Vector<Integer> v2 = new Vector<Integer>();
            int j = 0;
            while(j < size()) {</pre>
                 int erg = 0;
                 int k = 0:
                 while(k < v1.size()) {</pre>
                     erg = erg + v1.elementAt(k)
                         * m.elementAt(k).elementAt(j); k++; }
                 v2.addElement(new Integer(erg)); j++; }
            ret.addElement(v2); i++; }
        return ret; }}
                                                 (日) (同) (E) (E) (E)
```

Introduction

Alternative Typing

```
class Matrix extends Vector<Vector<Integer>> {
   Matrix/Vector<Vector<Integer>> mul(Matrix/Vector<Vector<Integer>> m) {
       Matrix/Vector<Vector<Integer>> ret = new Matrix();
        int i = 0:
        while(i <size()) {</pre>
            Vector<Integer> v1 = this.elementAt(i);
            Vector<Integer> v2 = new Vector<Integer>();
            int j = 0;
            while(j < size()) {</pre>
                int erg = 0;
                int k = 0:
                while(k < v1.size()) {</pre>
                    erg = erg + v1.elementAt(k)
                        * m.elementAt(k).elementAt(j); k++; }
                v2.addElement(new Integer(erg)); j++; }
            ret.addElement(v2); i++; }
       return ret; }}
```

Introduction

Purpose: Typless

```
class Matrix extends Vector<Vector<Integer>> {
   mul(m) {
       ret = new Matrix():
        i = 0;
       while(i <size()) {</pre>
            v1 = this.elementAt(i);
            v2 = new Vector<Integer>();
            j = 0;
            while(j < size()) {</pre>
                erg = 0;
               k = 0;
                while(k < v1.size()) {</pre>
                    erg = erg + v1.elementAt(k)
                        * m.elementAt(k).elementAt(j); k++; }
                v2.addElement(new Integer(erg)); j++; }
            ret.addElement(v2); i++; }
       return ret; }}
```

Introduction

System determines the principal typing(s)

mul: Matrix → Matrix &
Matrix → Vector<Vector<Integer>>
&...&
Vector<? extends Vector<? extends Integer>>
→ Vector<? super Vector<Integer>>

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

¹L. Damas, R. Milner. Principal type-schemes for functional programs.
 ²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007.

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]¹

¹L. Damas, R. Milner. Principal type-schemes for functional programs.

²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007 - 🔊 🤉

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]¹

- function type constructor \rightarrow (no higher-order functions)

¹L. Damas, R. Milner. Principal type-schemes for functional programs.

²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007 = -9

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]¹

- function type constructor \rightarrow (no higher-order functions)
- + function template $(ty_1 \times \ldots ty_n) \rightarrow ty_0$ (first-order functions)

¹L. Damas, R. Milner. Principal type-schemes for functional programs.

²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007 = 🤊 ୯ ୯

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]¹

- function type constructor \rightarrow (no higher-order functions)
- + function template $(ty_1 \times \ldots ty_n) \rightarrow ty_0$ (first-order functions)

+ subtyping

¹L. Damas, R. Milner. Principal type-schemes for functional programs.

²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007 - 🤊 🔍

Types Type unification Type inference algorithm

Type inference algorithm for Java 5^2

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]¹

- function type constructor \rightarrow (no higher-order functions)
- + function template $(ty_1 \times \ldots ty_n) \rightarrow ty_0$ (first-order functions)
- + subtyping
- + data and function polymorphism (overloading)

¹L. Damas, R. Milner. Principal type-schemes for functional programs.

²M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007 = 🤊 ୯ ୯

Types Type unification Type inference algorithm

Simple types SType_{TS}(*BTV*)

$$C < ty_1, \ldots, ty_n > \in \mathsf{SType}_{TS}(BTV)$$

if for
$$CC(C < ty_1, ..., ty_n >) = C < \overline{ty_1}, ..., \overline{ty_n} >$$
 holds:
$$\overline{ty_i} \leq^* b_i[a_j \mapsto \overline{ty_j} \mid 1 \leq j \leq n],$$

where

- CC(...) denotes the capture conversion
- \leq^* is the subtyping ordering.

・ロト ・回ト ・ヨト ・ヨト

Types

Type unification Type inference algorithm

Abbreviation for wildcard-types

Instead of A<? extends B> we write

A<<u>?</u>B>

and instead of C<? super D> we write

C<[?]D>.

・ロン ・回と ・ヨン ・ヨン

Types Type unification Type inference algorithm

Subtyping ordering \leq^*

Reflexive and transitive closure of

- if θ extends θ' then $\underline{\theta \leq^* \theta'}$.
- ▶ if $\theta_1 \leq^* \theta_2$ then $\sigma_1(\theta_1) \leq^* \sigma_2(\theta_2)$, where for each type variable *a* of θ_2 holds $\sigma_1(a) = \sigma_2(a) \in \text{SType}_{TS}(BTV)$ (soundness condition).
- $\underline{a \leq^* \theta'}$ for $a \in BTV^{(\theta_1 \& \dots \& \theta_n)}$ where $\exists \theta_i : \theta_i \leq^* \theta'$.
- ► It holds $C < \theta_1, \ldots, \theta_n > \leq^* C < \theta'_1, \ldots, \theta'_n >$ if for θ_i and θ'_i either
 - $\theta_i = {}_{?}\overline{\theta}_i, \ \theta'_i = {}_{?}\overline{\theta}'_i \ \text{and} \ \overline{\theta}_i \leq^* \overline{\theta}'_i \ \text{or}$
 - $\theta_i = {}^?\overline{\theta}_i, \ \theta'_i = {}^?\overline{\theta}'_i \ \text{and} \ \overline{\theta}'_i \leq {}^*\overline{\theta}_i \ \text{or}$
 - θ_i, θ'_i are no wildcard arguments and $\theta_i = \theta'_i$ or
 - $\theta'_i = \frac{1}{2} \theta_i$ or
 - $\bullet \ \theta'_i = {}^{?}\theta_i$
- From $C < \overline{\theta}_1, \dots, \overline{\theta}_n > \leq^* C < \theta'_1, \dots, \theta'_n >$ follows with $C < \overline{\theta}_1, \dots, \overline{\theta}_n >$ = $CC(C < \theta_1, \dots, \theta_n >)$: $C < \theta_1, \dots, \theta_n > \leq^* C < \theta'_1, \dots, \theta'_n >$
- $T |^{(\theta_1 \& \dots \& \theta_n)} \leq^* \theta_i \text{ for any } 1 \leqslant i \leqslant n.$

イロン イヨン イヨン イヨン

Types **Type unification** Type inference algorithm

Type unification [Pluemicke 2009]³

Subtyping relation for type terms: \leq^*

Type Unification problem:

For two type terms θ_1 and θ_2 a substitution σ is demanded such that:

 $\sigma(\theta_1) \leq^* \sigma(\theta_2).$

Base: Unification algorithm [Martelli, Montanari 1982]⁴

³M. Pluemicke. Java type unification with wildcards, INAP 07. LNAI 5437.
 ⁴A. Martelli, U. Montanari. An efficient unification algorithms

Types Type unification Type inference algorithm

Example

Subtyping relation:

Integer \leq^* Number Stack<a> \leq^* Vector<a> \leq^* AbstractList<a> \leq^* List<a>

・ロン ・回 と ・ ヨ と ・ ヨ と

Types Type unification Type inference algorithm

Example

Subtyping relation:

Integer \leq^* Number Stack<a> \leq^* Vector<a> \leq^* AbstractList<a> \leq^* List<a>

Application of the algorithm:

{(Stack<a> < Vector<?Number>),(AbstractList<Integer> < List<a>)}

Types Type unification Type inference algorithm

Example

Subtyping relation:

Integer \leq^* Number Stack<a> \leq^* Vector<a> \leq^* AbstractList<a> \leq^* List<a>

Application of the algorithm:

 $\{ (Stack<a> < Vector<_?Number>), (AbstractList<Integer> < List<a>) \} \\ \implies \{ a <_? ?Number, Integer <_? a \}$

Types Type unification Type inference algorithm

Example

Subtyping relation:

Integer \leq^* Number Stack<a> \leq^* Vector<a> \leq^* AbstractList<a> \leq^* List<a>

Application of the algorithm:

{(Stack<a> < Vector<?Number>),(AbstractList<Integer> < List<a>)} ⇒ {a <??Number, Integer <?a} ⇒ { {a ÷?Number, a ÷ Integer }, {a ÷?Number, a ÷?Number }, {a ÷?Number, a ÷?Integer }, {a ÷?Number, a ÷?Integer }, {a ÷ Number, a ÷ Integer }, {a ÷ Number, a ÷?Integer }, {a ÷ ?Integer, a ÷ Integer }, {a ÷ ?Integer, a ÷?Integer }, {a ÷ ?Integer, a ÷ Integer }, {a ÷ ?Integer, a ÷?Integer }, {a ÷ ?Integer, a ÷ ?Integer }, {a ÷ ?Integer, a ÷?Integer }, {a ÷ Integer, a ÷ Integer }, {a ÷ Integer, a ÷?Integer }, {a ÷ Integer, a ÷ ?Integer }, {a ÷ Integer, a ÷?Integer }, {a ÷ Integer }, {

Types Type unification Type inference algorithm

Example cont.

・ロン ・回 と ・ ヨン ・ ヨン

Types Type unification Type inference algorithm

Example cont.

 $\Longrightarrow \{\,\{\, \texttt{a} \mapsto {}_?\texttt{Number}\,\}, \{\, \texttt{a} \mapsto {}_?\texttt{Integer}\,\}, \{\, \texttt{a} \mapsto \texttt{Integer}\,\}\,\}$

・ロト ・回ト ・ヨト ・ヨト

Types Type unification Type inference algorithm

The language Java_{core}

Source	:=	class*
class	:=	Class(<i>stype</i> , [extends(<i>stype</i>),] <i>IVarDecl</i> *, <i>Method</i> *)
IVarDecl	:=	InstVarDecl(<i>stype</i> , <i>var</i>)
Method	:=	Method(<i>mname</i> , [<i>stype</i>], (<i>var</i> [, <i>stype</i>])*, <i>block</i>)
block	:=	Block(<i>stmt</i> *)
stmt	:=	<i>block</i> Return(<i>expr</i>) While(<i>bexpr</i> , <i>block</i>)
		LocalVarDecl(<i>var</i> [, <i>stype</i>]) If(<i>bexpr</i> , <i>block</i> [, <i>block</i>])
		stmtexpr
stmtexpr	:=	Assign(var, expr) New(stype, expr*)
		MethodCall([<i>expr</i> ,] <i>f</i> , <i>expr</i> *)
expr	:=	<i>stmtexpr</i> this super
		LocalOrFieldVar(<i>var</i>) InstVar(<i>expr</i> , <i>var</i>)
		bexp sexp

æ

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.

・ロン ・回 と ・ ヨ と ・ ヨ と

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.
Run over the abstract syntax tree: During the run over the abstract syntax tree of the coresponding java class the types are calculated gradually by type unification.

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.
Run over the abstract syntax tree: During the run over the abstract syntax tree of the coresponding java class the types are calculated gradually by type unification.
Multiplying the assumptions: If the result of a type unification contains

Multiplying the assumptions: If the result of a type unification contains more than one result or if there is data polymorphism, the set of type assumptions is multiplied.

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract syntax tree of the coresponding java class the types are calculated gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains more than one result or if there is data polymorphism, the set of type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding set of type assumptions is erased.

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract syntax tree of the coresponding java class the types are calculated gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains more than one result or if there is data polymorphism, the set of type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders are replaced by new introduced method type parameters.

・ロン ・回 と ・ ヨ と ・ ヨ と

Types Type unification Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract syntax tree of the coresponding java class the types are calculated gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains more than one result or if there is data polymorphism, the set of type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders are replaced by new introduced method type parameters. Intersection types: At the end each remained set of type assumptions forms one element of the result's intersection type.

Types Type unification Type inference algorithm

Example: Multiplication of matrices: Type assumptions

```
class Matrix extends Vector<Vector<Integer>> {
   \{\alpha\} mul(\{\beta\} m) \{
       \{\gamma\} ret = new Matrix();
       int i = 0;
       while(i <size()) {</pre>
          { l } v1 = this.elementAt(i);
          \{\kappa\} v2 = new Vector<Integer>();
          int j = 0;
          while(j < size()) {</pre>
              \{\chi\} erg = 0;
              int k = 0:
              while(k < v1.size()) {</pre>
                 erg = erg + (\{\xi\}(\{\iota\} v1).elementAt(k))
                     * (\{\psi\}(\{\phi\}\ (\{\beta\}\ m).elementAt(k)).elementAt(j)); k++;\}
              v2.addElement({\chi} erg); j++; }
          ret.addElement({ µ } v2); i++; }
       return ret; }}
```

Types Type unification Type inference algorithm

ret = new Matrix ()

```
 \{ \alpha \} \underline{\text{mul}}(\{ \beta \} \text{ m}) \{ \{ \gamma \} \text{ ret} = \{ \text{Matrix} \} \text{ new Matrix}(); \\ \dots \\ \text{return } \{ \gamma \} \text{ ret}; \}
```

Unification: Matrix $\lessdot \gamma$

 \Rightarrow

 $\gamma = Matrix$ $\gamma = Vector < Vector < Integer >>$ $\gamma = Vector <_? Vector < Integer >>$ $\gamma = Vector <_? Vector <_? Integer >>$ $\gamma = Vector <_? Vector <^? Integer >>$ $\gamma = Vector <^? Vector < Integer >>$

Types Type unification Type inference algorithm

Type assumptions after the first unification

```
class Matrix extends Vector<Vector<Integer>> {
    \{\alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha\} mul(\{\beta, \beta, \beta, \beta, \beta, \beta\} m) \{
         {Matrix, Vector<Vector<Integer>>, Vector<?Vector<Integer>>,
          Vector<?Vector<?Integer>>, Vector<?Vector<?Integer>>,
          Vector<?Vector<Integer>> } ret = new Matrix();
         int i = 0; while(i <size()) {</pre>
              \{\iota, \iota, \iota, \iota, \iota, \iota, \iota\} v1 = this.elementAt(i);
              {\kappa, \kappa, \kappa, \kappa, \kappa, \kappa} v2 = new Vector<Integer>();
              int j = 0; while(j < size()) {</pre>
                  \{\chi, \chi, \chi, \chi, \chi, \chi, \chi, \chi\} erg = 0;
                  int k = 0; while(k < v1.size()) {
                       erg = erg + \left(\left\{\frac{\xi, \xi, \xi, \xi, \xi, \xi}{\iota, \iota, \iota, \iota, \iota, \iota, \iota}\right\} \text{ v1}\right) \cdot elementAt(k)\right)
                         * (\{\psi, \psi, \psi, \psi, \psi, \psi\})
                             \{\phi, \phi, \phi, \phi, \phi, \phi, \phi\}
                               (\{\beta, \beta, \beta, \beta, \beta, \beta\}  m).elementAt(k)).elementAt(j)); k++;
                  v2.addElement({\chi, \chi, \chi, \chi, \chi, \chi, \chi} erg); j++; }
              ret.addElement({\mu, \mu, \mu, \mu, \mu, \mu, \mu} v2); i++; }
         return ret; }}
                                                                         (日) (同) (E) (E) (E)
```

Types Type unification Type inference algorithm

v1 = this.elementAt(i);

```
{ α } <u>mul</u>({ β } m) {
    ...
    { ι } v1 = ({Matrix } this).elementAt(i);
    ...
}
```

Unification: Matrix < Vector<

 \Rightarrow

```
ι = Vector<Integer>
ι = Vector<?Integer>
ι = Vector<?Integer>
```
Types Type unification Type inference algorithm

return ret;

```
 \{ \alpha \} \underline{\text{mul}}(\{ \beta \} \text{m}) \{ \\ \dots \\ \text{return } \{ \gamma \} \text{ret;}
```

Unification: $\gamma \lessdot \alpha$ for

- $\gamma = \texttt{Matrix}$
- $\gamma = \texttt{Vector} < \texttt{Vector} < \texttt{Integer} >>$
- $\gamma = \texttt{Vector} < ?\texttt{Vector} < \texttt{Integer} >>$

Result:

}

- lpha= Matrix
 - lpha = Vector<Vector<Integer>>
 - $\alpha = \texttt{Vector}^?\texttt{Vector} \texttt{Integer}$
 - $\alpha = \texttt{Vector}_?\texttt{Vector}\texttt{Integer}$
 - $\alpha = \texttt{Vector}_?\texttt{Vector}_?\texttt{Integer}$
 - $\alpha = \text{Vector}_{?}\text{Vector}^{?}\text{Integer}$

Type inference algorithm for Java 5 Java with intersection types

Closures in Java 7

Types Type unification Type inference algorithm

Result:

mul:
$$\&_{eta,lpha}(eta{
ightarrow} lpha)$$
,

where

```
\beta \leq * Vector<?Vector<?Integer>>, Matrix \leq * \alpha
```

・ロン ・回 と ・ ヨ と ・ ヨ と

Types Type unification Type inference algorithm

Implementation

- Overloading–Example
- Return–Example
- Matrix–Example

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Implementation

Types Type unification Type inference algorithm

- Overloading–Example
- Return–Example
- Matrix–Example

Purpuse: Byte-code generation for methods with intersection types

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

First approach The algorithm

Code generation for method with intersection types⁵

- Byte-code allows no intersection types
- First approach: generate for each element of the intersection type an own method

⁵M. Pluemicke, *Intersection types in java*. PPPJ 2008. $\rightarrow \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$

First approach The algorithm

Example: class OL I

```
class OL {
      Integer m(x) { return x + x; } //Integer \rightarrow Integer
     Boolean m(x) { return x || x; } //Boolean \rightarrow Boolean
}
class Main {
    main(x) \{ // Integer \rightarrow Integer \& Boolean \rightarrow Boolean \}
        ol;
        ol = new OL();
        return ol.m(x);
```

イロン イヨン イヨン イヨン

First approach The algorithm

Example: class OL II

Result for Main:

```
class Main {
    Integer main(Integer x) {
        OL ol;
        ol = new OL();
        return ol.m(x); }
    Boolean main(Boolean x) {
        OL ol;
        ol = new OL();
        return ol.m(x);
```

・ 回 と ・ ヨ と ・ ヨ と

-2

First approach The algorithm

Example: class OL II

Result for Main:

```
class Main {
    Integer main(Integer x) {
        OL ol;
        ol = new OL();
        return ol.m(x); }
    Boolean main(Boolean x) {
        OL ol;
        ol = new OL();
        return ol.m(x);
```

Java program is correct

First approach The algorithm

Example: Multiplication of matrices

mul: $\&_{\beta,\alpha}(\beta \rightarrow \alpha)$,

where

 $\beta \leq^*$ Vector<? extends Vector<? extends Integer>>, Matrix $\leq^* \alpha$

・ロト ・回ト ・ヨト ・ヨト

Example: Multiplication of matrices

mul:
$$\&_{eta,lpha}(eta{
ightarrow}lpha)$$
,

where

 $\beta \leq^*$ Vector<? extends Vector<? extends Integer>>, Matrix $\leq^* \alpha$

class Matrix extends Vector<Vector<Integer>> {
 Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
 Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
 Matrix mul(Vector<Vector<Integer>> m) { ... }
 ...
 Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
 ...
 Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... }

◆□> ◆□> ◆目> ◆目> ◆日 ● の Q @ >

Example: Multiplication of matrices

mul:
$$\&_{eta,lpha}(eta{
ightarrow}lpha)$$
,

where

 $\beta \leq^*$ Vector<? extends Vector<? extends Integer>>, Matrix $\leq^* \alpha$

class Matrix extends Vector<Vector<Integer>> {
 Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
 Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
 Matrix mul(Vector<Vector<Integer>> m) { ... }
 ...
 Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
 ...
 Vector<? extends Vector? extends Integer>> m) { ... }
 ...
 Vector<? extends Vector? extends Integer>> mul(Matrix m) { ... }
 Not a correct Java program

First approach The algorithm

Group elements of the intersection type

Idea:

- 1. Group all elements which
 - executes the same code
 - have a common subtype
- 2. Generate new methods only for the groups

- - 4 回 ト - 4 回 ト

Group elements of the intersection type

Idea:

- 1. Group all elements which
 - executes the same code
 - have a common subtype
- 2. Generate new methods only for the groups

Code-execution: Callgraph of the method declarations

 $\mathcal{CG}(cl.m:\tau)$

Callgraph of the method m in the class cl with the typing τ .

(4月) (4日) (4日)

Group elements of the intersection type

Idea:

- 1. Group all elements which
 - executes the same code
 - have a common subtype
- 2. Generate new methods only for the groups

Code-execution: Callgraph of the method declarations

 $\mathcal{CG}(cl.m:\tau)$

Callgraph of the method m in the class cl with the typing τ .

Subtype of function types: Subtyping ordering $\theta_i \leq^* \theta'_i, \theta \leq^* \theta' \Rightarrow$

$$\theta'_1 \times \ldots \times \theta'_n \to \theta \leq^* \theta_1 \times \ldots \times \theta_n \to \theta'$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example class OL I

Callgraph

 $\mathcal{CG}(\texttt{Main.main}:\texttt{Integer}
ightarrow \texttt{Integer}) \ \mathcal{CG}(\texttt{Main.main}:\texttt{Boolean}
ightarrow \texttt{Boolean})$

Main.main: Integer->Integer & Boolean -> Boolean Main.main: Integer->Integer & Boolean -> Boolean Main.main: Integer->Integer & Boolean -> Boolean OL.m: Integer -> Integer Ol.m: Boolean -> Boolean

(1日) (日) (日)

Example class OL I

Callgraph

 $\mathcal{CG}(\texttt{Main.main}:\texttt{Integer}
ightarrow \texttt{Integer}) \ \mathcal{CG}(\texttt{Main.main}:\texttt{Boolean}
ightarrow \texttt{Boolean})$

Main.main: Integer->Integer & Boolean -> Boolean Main.main: Integer->Integer & Boolean -> Boolean CL.m: Integer -> Integer Ol.m: Boolean -> Boolean

Subtype

 $\texttt{Integer} \to \texttt{Integer}$

 $\texttt{Boolean} \to \texttt{Boolean}$

イロト イヨト イヨト イヨト

First approach The algorithm

Example class OL II

Code generation

```
class Main {
    Integer main(Integer x) {
        OL ol;
        ol = new OL();
        return ol.m(x); }
    Boolean main(Boolean x) {
        OL ol;
        ol = new OL();
        return ol.m(x);
    } }
```

Code is unchanged in comparison to the first approach

・日・ ・ ヨ・ ・ ヨ・

-2

First approach The algorithm

Example class Matrix |

Callgraph $CG(Matrix.mul : \tau)$ for all τ

イロト イヨト イヨト イヨト

First approach The algorithm

Example class Matrix |

Callgraph $CG(Matrix.mul : \tau)$ for all τ

Subtype:

Vector<? extends Vector<? extends Integer>> \rightarrow Matrix

イロト イヨト イヨト イヨト

Example class Matrix II

Code generation (only one method!)

```
Matrix mul(Vector<? extends Vector<? extends Integer>> m) {
   Matrix ret = new Matrix();
   int i = 0;
   while(i <size()) {</pre>
       Vector<Integer> v1 = this.elementAt(i);
       Vector<Integer> v2 = new Vector<Integer>();
       int j = 0;
       while(j < size()) {</pre>
           int erg = 0;
           int k = 0:
           while(k < v1.size()) { erg = erg + ...; k++; }
           v2.addElement(new Integer(erg)); j++; }
       ret.addElement(v2); i++; }
   return ret; }}
                                            (日) (同) (E) (E) (E)
```

The algorithm

Input: A Java program p with inferred (intersection) types.

Output: A Java program p', where the methods have standard Java types. The semantics of p and p' are equal.

1. Step: For every class *cl* in *p* consider for each method *m* the intersection type *ty_m*:

- Build the callgraph CG(cl.m : τ) for each function type τ of the intersection type ty_m.
- Group all elements τ of ty_m, where CG(cl.m:τ) is the same graph and there is a subtype.

・ロン ・回 とくほど ・ ほとう

The algorithm

Input: A Java program *p* with inferred (intersection) types.

Output: A Java program p', where the methods have standard Java types. The semantics of p and p' are equal.

1. Step: For every class *cl* in *p* consider for each method *m* the intersection type *ty_m*:

- Build the callgraph CG(cl.m : τ) for each function type τ of the intersection type ty_m.
- Group all elements τ of ty_m , where $CG(cl.m : \tau)$ is the same graph and there is a subtype.
- 2. Step: Determine the subtype of the respective group.

・ロン ・回 とくほど ・ ほとう

The algorithm

Input: A Java program p with inferred (intersection) types.

Output: A Java program p', where the methods have standard Java types. The semantics of p and p' are equal.

1. Step: For every class *cl* in *p* consider for each method *m* the intersection type ty_m :

- Build the callgraph $CG(cl.m:\tau)$ for each function type τ of the intersection type ty_m .
- Group all elements τ of ty_m , where $\mathcal{CG}(cl.m:\tau)$ is the same graph and there is a subtype.
- 2. Step: Determine the subtype of the respective group.
- 3. Step: Generate for each group of function types the corresponding Java code with the subtype as standard typing in p'. ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Principal Typing

Definition [Damas, Milner 1982]:

"A type-scheme for a declaration is a *principal type-scheme*, if any other type-scheme for the declaration is a generic instance of it."

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Principal Typing

Definition [Damas, Milner 1982]:

"A type-scheme for a declaration is a *principal type-scheme*, if any other type-scheme for the declaration is a generic instance of it."

Generalized definition for Java:

"An intersection type-scheme for a declaration is a *principal type-scheme*, if any (non-intersection) type-scheme θ for the declaration is a supertype of a generic instance of one element of the intersection type-scheme τ and θ and τ have the same callgraph."

イロン イヨン イヨン イヨン

Principal Typing

Definition [Damas, Milner 1982]:

"A type-scheme for a declaration is a *principal type-scheme*, if any other type-scheme for the declaration is a generic instance of it."

Generalized definition for Java:

"An intersection type-scheme for a declaration is a *principal type-scheme*, if any (non-intersection) type-scheme θ for the declaration is a supertype of a generic instance of one element of the intersection type-scheme τ and θ and τ have the same callgraph."

This refined definition guarantees, that for each method, which is generated by the resolving algorithm, at least one typing is contained in the principal type.

Conclusion of Java 5 type inference

Conclusion

- Type inference algorithm for Java 5, which determines intersection types
- Resolving algorithm of intersection types, which allows to generate byte code for intersection types
- Principal type property.

イロン イヨン イヨン イヨン

-2

Conclusion of Java 5 type inference

Conclusion

- Type inference algorithm for Java 5, which determines intersection types
- Resolving algorithm of intersection types, which allows to generate byte code for intersection types
- Principal type property.

Outlook

At the moment: Type inference algorithm infers typings, which are later erased as supertypes by the resolving algorithm.

Purpuse: Type inference algorithm infers only subtypes, such that no typings are erased in the resolving algorithm.

Implementation: The resolving algorithm and optimize the type inference algorithm

The language The type-system Type inference

Closures (λ -expressions) in Java 7?

Motivation: Bulk-data APIs like parallel arrays

parallelism approach: sorting, searching, selection

Example:

```
public class Student {
    String name;
    int graduationYear;
    double gpa; //grade point average
}
```

ParallelArray<Student> students
 = new ParallelArray<Student>(fjPool, data);
double bestGpa = students.withFilter(isSenior)

```
uble bestGpa = students.withFilter(isSenior)
                .withMapping(selectGpa)
                .max();
```

The language The type-system Type inference

Realization by helper objects

```
static final Ops.Predicate<Student> isSenior
   = new Ops.Predicate<Student>() {
        public boolean op(Student s) {
            return s.graduationYear == Student.THIS_YEAR;
    };
static final Ops.ObjectToDouble<Student> selectGpa
   = new Ops.ObjectToDouble<Student>() {
        public double op(Student student) {
            return student.gpa;
    };
```

・ 回 ト ・ ヨ ト ・ ヨ ト

The language The type-system Type inference

Realization by closures (λ -expressions)

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

The language The type-system Type inference

Different approaches

- Closures for the Java Programming Language: BGGA [Bracha, Gafter, Gosling, von der Ahé]
- Concise Instance Creation Expressions: Closures without Complexity: CICE

[Lee, Lea, Bloch]

 First-class methods: Java-style closures: FCM [Colebourne, Schulz]

⁶ http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001_txt 🚊 🔗 ९. 🤆

The language The type-system Type inference

Different approaches

- Closures for the Java Programming Language: BGGA [Bracha, Gafter, Gosling, von der Ahé]
- Concise Instance Creation Expressions: Closures without Complexity: CICE

[Lee, Lea, Bloch]

 First-class methods: Java-style closures: FCM [Colebourne, Schulz]

Our approach is following: Project Lambda⁶ Java Language Specification draft (Version 0.1.5)

⁶ http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-00015txt 🗦 🔗 ९, 🕑

The language The type-system Type inference

Mark Reinhold's Blog (Principal Engineer Java SE and OpenJDK)

Two key features are needed:

- A literal syntax, for writing closures, and
- Function types, so that closures are first-class citizens in the type system.

To integrate closures with the rest of the language and the platform we need two additional features:

- Closure conversion to implement a single-method interface or abstract class and
- Extension methods

イロト イヨト イヨト イヨト

The language The type-system Type inference

The language Java $_{\lambda}$

Source	:=	class*
class	:=	Class(<i>stype</i> , [extends(<i>stype</i>),] <i>IVarDecl</i> *, <i>FunDecl</i> *)
IVarDecl	:=	InstVarDecl(<i>stype</i> , <i>var</i>)
FunDecl	:=	Fun(fname, [type], lambdaexpr)
block	:=	Block(stmt*)
stmt	:=	<i>block</i> Return(<i>expr</i>) While(<i>bexpr</i> , <i>block</i>)
		LocalVarDecl(<i>var</i> [, <i>type</i>]) If(<i>bexpr</i> , <i>block</i> [, <i>block</i>])
		stmtexpr
lambdaexpr	:=	Lambda(((<i>var</i> [, <i>type</i>]))*, (<i>stmt</i> <i>expr</i>))
stmtexpr	:=	Assign(<i>var</i> , <i>expr</i>) New(<i>stype</i> , <i>expr</i> *)
		Eval(<i>expr</i> , <i>expr</i> *)
expr	:=	lambdaexpr stmtexpr this super
		LocalOrFieldVar(<i>var</i>) InstVar(<i>expr</i> , <i>var</i>)
	Í	InstFun(expr, fname) bexp sexp
		 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

The language The type-system Type inference

Types Type_{TS}(BTV)

- SType_{TS}(BTV) \subseteq Type_{TS}(BTV)
- For $\theta_i \in \text{Type}_{TS}(BTV)$

 $\# \theta_0(\theta_1,\ldots,\theta_n) \in \operatorname{Type}_{TS}(BTV)$

(*straw-man syntax*, correspond to $\theta_1 \times \ldots \times \theta_n \rightarrow \theta_0$)

イロン イヨン イヨン イヨン
The language The type-system Type inference

Subtyping-relation

Let \leq^* be the Java subtyping relation on simple types SType_{TS}(*BTV*). The continuation on Type_{TS}(*BTV*) is defined as:

 $\# \theta_0 \left(\theta'_1, \ldots, \theta'_n \right) \leq^* \# \theta'_0 \left(\theta_1, \ldots, \theta_n \right) \quad \text{iff} \quad \theta_i \leq^* \theta'_i.$

The language The type-system Type inference

λ –Abstraction

$\begin{bmatrix} \mathsf{lambda}_{\mathsf{stmt}} \end{bmatrix}$ $(O \cup \{x_i : \theta_i\}, \tau, \tau') \vartriangleright_{Stmt} s : \theta$

 $(O, \tau, \tau') \triangleright_{Expr} \text{Lambda}((x_1, \ldots, x_n), s) : \# \theta(\theta_1, \ldots, \theta_n)$

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

λ –Abstraction

$\begin{bmatrix} \mathsf{lambda}_{\mathsf{stmt}} \end{bmatrix} \\ (O \cup \{ x_i : \theta_i \}, \tau, \tau') \vartriangleright_{\mathsf{Stmt}} s : \theta \end{bmatrix}$

 $(O, \tau, \tau') \triangleright_{Expr} \text{Lambda}((x_1, \ldots, x_n), s) : \# \theta (\theta_1, \ldots, \theta_n)$

$\begin{bmatrix} \mathsf{lambda}_{\mathsf{expr}} \end{bmatrix}$ $(O \cup \{x_i : \theta_i\}, \tau, \tau') \vartriangleright_{\mathsf{Expr}} e : \theta$

 $(O, \tau, \tau') \vartriangleright_{Expr} \text{Lambda}((x_1, \ldots, x_n), e) : \# \theta (\theta_1, \ldots, \theta_n)$

イロト イポト イヨト イヨト

The language The type-system Type inference

Application

$$\frac{[\mathsf{App}]}{(O, \tau, \tau') \vartriangleright_{\mathsf{Expr}} e : \# \theta (\theta'_1, \dots, \theta'_n), \quad (O, \tau, \tau') \vartriangleright_{\mathsf{Expr}} e_i : \theta_i }{(O, \tau, \tau') \bowtie_{\mathsf{Expr}} \mathsf{Eval}(e, e_1 \dots e_n) : \theta } \theta_i \leq^* \theta'_i$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ

The language The type-system Type inference

Application

$$\begin{array}{c} [\mathbf{App}] \\ (O, \tau, \tau') \vartriangleright_{Expr} e : \# \theta \left(\theta'_1, \dots, \theta'_n \right), \quad (O, \tau, \tau') \vartriangleright_{Expr} e_i : \theta_i \\ \hline \\ \hline \\ (O, \tau, \tau') \vartriangleright_{Expr} Eval(e, e_1 \dots e_n) : \theta \end{array}$$

$[InstFun] (O, \tau, \tau') \succ_{Expr} re : \overline{\theta}, \quad O_{\overline{\theta}} \succ_{Id} f : \# \theta (\theta_1, \dots, \theta_n)$ $(O, \tau, \tau') \succ_{Expr} InstFun(re, f) : \# \theta (\theta_1, \dots, \theta_n)$

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

Adapt Fuh and Mishra's algorithm⁷.

- Java_λ type system is equivalent
- subtyping, but
- no overloading

⁷Y.-C. Fuh, P. Mishra. Type inference with subtypes. ESOP 288 () + () + ()

The language The type-system Type inference

Adapt Fuh and Mishra's algorithm⁷.

- Java_λ type system is equivalent
- subtyping, but
- no overloading
- Problem: Fuh and Mishra's algorithm determines well typings (set of possibly not unique solvable unequations)

⁷Y.-C. Fuh, P. Mishra. Type inference with subtypes. ESOP 288 (2) (2) (2)

The language The type-system Type inference

Fuh und Mishra's algorithm

$\textbf{WTYPE}: \texttt{TypeAssumptions} \times \texttt{Expression} \rightarrow \texttt{WellTyping} + \set{\textit{fail}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

Fuh und Mishra's algorithm

WTYPE : TypeAssumptions × Expression \rightarrow WellTyping + { *fail* }

$\texttt{TYPE: TypeAssump} \times \texttt{Expr} \rightarrow \texttt{Type} \times \texttt{CoercionSet}$

Construct the set of coercions by running over the Expression.

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

Fuh und Mishra's algorithm

WTYPE : TypeAssumptions × Expression \rightarrow WellTyping + { *fail* }

 $\texttt{TYPE: TypeAssump} \times \texttt{Expr} \rightarrow \texttt{Type} \times \texttt{CoercionSet}$

Construct the set of coercions by running over the Expression.

 $\mathsf{MATCH} : \texttt{CoercionSet} \rightarrow \texttt{Substitution} + \{ \mathit{fail} \}$

Extended unification to adopt the structure of the coercions.

・ロト ・回ト ・ヨト ・ヨト

The language The type-system Type inference

Fuh und Mishra's algorithm

WTYPE : TypeAssumptions × Expression \rightarrow WellTyping + { *fail* }

 $\texttt{TYPE: TypeAssump} \times \texttt{Expr} \rightarrow \texttt{Type} \times \texttt{CoercionSet}$

Construct the set of coercions by running over the Expression.

 $\mathsf{MATCH} : \mathsf{CoercionSet} \to \mathsf{Substitution} + \{ \mathit{fail} \}$

Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet \rightarrow AtomicCoercionSet Eliminate type constructors, especially the *functor* and the

tuple-construction

(日) (同) (E) (E) (E)

The language The type-system Type inference

Fuh und Mishra's algorithm

 $\textbf{WTYPE}: \texttt{TypeAssumptions} \times \texttt{Expression} \rightarrow \texttt{WellTyping} + \set{\textit{fail}}$

 $\texttt{TYPE: TypeAssump} \times \texttt{Expr} \rightarrow \texttt{Type} \times \texttt{CoercionSet}$

Construct the set of coercions by running over the Expression.

 $\mathsf{MATCH} : \mathtt{CoercionSet} \rightarrow \mathtt{Substitution} + \{ \mathit{fail} \}$

Extended unification to adopt the structure of the coercions.

 $\mathsf{SIMPLIFY} : \texttt{CoercionSet} \to \texttt{AtomicCoercionSet}$

Eliminate type constructors, especially the *functor* and the *tuple-construction*

 $CONSISTENT : AtomicCoercionSet \rightarrow Boolean + \{ fail \}$

Consistence check, and additionally determination of possible solutions.

The language The type-system Type inference

Adaption to the Java $_{\lambda}$ type system

SIMPLIFY: The [Martelli, Montanari 1982] unification is substituted by the [Pluemicke 2009] type unification⁸

CONSISTENCE: The functions *above* and *below* are substituted by the functions greater and smaller⁸, as *above* and *below* are not finite in the Java_{λ} type system.

⁸M. Pluemicke. Java type unification with wildcards, INAP 07. LNAI 5437. 🚊 🧠 🤉

The language The type-system Type inference

Example

class Matrix extends Vector<Vector<Integer>> {

```
//Matrix -> ((Matrix, Matrix) -> Matrix) -> Matrix
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))
}
```

イロト イヨト イヨト イヨト

The language The type-system Type inference

Example

class Matrix extends Vector<Vector<Integer>> {

```
//Matrix -> ((Matrix, Matrix) -> Matrix) -> Matrix
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
  op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))
. . .
public static void main(String[] args) {
    Matrix m1 = new Matrix(...);
    Matrix m2 = new Matrix(...);
   m1.op.(m2).(#(Matrix m1, Matrix m2) {
                   Matrix ret = new Matrix ();
                   : //matrice multiplication
                   return ret;
                   })
```

◆□ > ◆□ > ◆臣 > ◆臣 > ○

The language The type-system Type inference

Goal

Typed syntax:

```
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))
```

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

Goal

Typed syntax:

```
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))
```

Typeless syntax:

op = #(m)(#(f)(f(this, m)))

Goal: The system determines the type

##Matrix(#Matrix(Matrix, Matrix))(Matrix)

automatically.

The language The type-system Type inference

$WTYPE(\emptyset, #(m)(#(f)(f.(this, m)))),$

(TYPE)

イロン イヨン イヨン イヨン

- $\blacktriangleright t_m \to t_{\#f} \lessdot t_{\rm op}$
- $\blacktriangleright t_f \to t_{f(this,m)} \lessdot t_{\#f}$
- $\blacktriangleright t_f \lessdot (t_1, t_2) \rightarrow t_3$
- Matrix $\lessdot t_1$
- $t_m \lt t_2$
- ► $t_3 \ll t_{f(this,m)}$

The language The type-system Type inference

$WTYPE(\emptyset, #(m)(#(f)(f.(this, m)))),$

$$\begin{aligned} \mathbf{t}_{m} \rightarrow ((\epsilon_{2}, \epsilon_{2}') \rightarrow \epsilon_{2}'') \rightarrow \gamma_{1}' \leqslant \beta \rightarrow ((\epsilon_{3}, \epsilon_{3}') \rightarrow \epsilon_{3}'') \rightarrow \gamma_{2}', \\ (t_{\text{op}} \mapsto \beta \rightarrow \beta'), \ (t_{\#f} \mapsto \gamma_{1} \rightarrow \gamma_{1}'), \ (\beta' \mapsto \gamma_{2} \rightarrow \gamma_{2}'), \\ (\gamma_{1} \mapsto (\epsilon_{2}, \epsilon_{2}') \rightarrow \epsilon_{2}''), \ (\gamma_{2} \mapsto (\epsilon_{3}, \epsilon_{3}') \rightarrow \epsilon_{3}'') \end{aligned}$$

$$((\epsilon_1, \epsilon'_1) \to \epsilon''_1) \to t_{f(this,m)} \lessdot ((\epsilon_2, \epsilon'_2) \to \epsilon''_2) \to \gamma'_1 (t_{\#f} \mapsto \gamma_1 \to \gamma'_1), (t_f \mapsto (\epsilon_1, \epsilon'_1) \to \epsilon''_1), (\gamma_1 \mapsto (\epsilon_2, \epsilon'_2) \to \epsilon''_2)$$

$$\bullet (\epsilon_1, \epsilon_1') \to \epsilon_1'' \lessdot (t_1, t_2) \to t_3$$

 $(t_f \mapsto (\epsilon_1, \epsilon_1') \to \epsilon_1''), (\gamma_1 \mapsto (\epsilon_2, \epsilon_2') \to \epsilon_2'')$

イロン イヨン イヨン イヨン

- Matrix $\lt t_1$
- ► $t_m \lt t_2$
- $t_3 \ll t_{f(this,m)}$

The language The type-system Type inference

$WTYPE(\emptyset, #(m)(#(f)(f.(this, m)))),$

(SIMPLIFY)

イロト イヨト イヨト イヨト

$$\begin{array}{l} \flat \hspace{0.1cm} \beta \lessdot t_{m}, \\ \epsilon_{2} \lessdot \epsilon_{3}, \hspace{0.1cm} \epsilon_{2}' \lessdot \epsilon_{3}', \hspace{0.1cm} \epsilon_{3}'' \lessdot \epsilon_{2}'', \\ \gamma_{1}' \lessdot \gamma_{2}' \\ \flat \hspace{0.1cm} \epsilon_{1} \lessdot \epsilon_{2}, \hspace{0.1cm} \epsilon_{1}' \lessdot \epsilon_{2}', \hspace{0.1cm} \epsilon_{2}'' \lessdot \epsilon_{1}'', \end{array}$$

- $t_{f(this,m)} \leq \gamma'_{1}$ $t_{1} \leq \epsilon_{1},$ $t_{2} \leq \epsilon'_{1},$ $\epsilon''_{1} \leq t_{3}$
- Matrix $\lt t_1$
- ► $t_m \lt t_2$
- ► $t_3 \lt t_{f(this,m)}$

The language The type-system Type inference

$WTYPE(\emptyset, #(m)(#(f)(f.(this, m)))), (CONSISTENCE))$

lt	Coercion	I Matrix	<i>I</i> _{t1}	I_{ϵ_1}	I_{ϵ_2}	I_{ϵ_3}	
0		М	*	*	*	*	
1	$\mathbb{M} \lessdot t_1$	М	M, V <v<int>></v<int>	*	*	*	
1	$t_1 \lessdot \epsilon_1$	M	M, V <v<int>></v<int>	M, V <v<int>></v<int>	*	*	
1	$\epsilon_1 \lessdot \epsilon_2$	M	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V <v<int>></v<int>	*	
1	$\epsilon_2 \lessdot \epsilon_3$	M	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V <v<int>></v<int>	
1		M	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V < V < Int >>	
2		М	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V <v<int>></v<int>	M, V < V < Int >>	

The language The type-system Type inference

Result

$${\sf op}:eta
ightarrow ((\epsilon_3,\epsilon_3')
ightarrow \epsilon_3'')
ightarrow \gamma_2'$$

with

$$\begin{split} &\epsilon_3 = \texttt{Matrix}, \texttt{Vector} < \texttt{Vector} < \texttt{Integer} >> \\ &\beta \lessdot t_m \lessdot t_2 \lessdot \epsilon_1' \lessdot \epsilon_2' \lessdot \epsilon_3' \\ &\epsilon_3'' \lessdot \epsilon_2'' \lessdot \epsilon_1'' \lessdot t_3 \lessdot t_{f(\textit{this},m)} \lessdot \gamma_1' \lessdot \gamma_2' \end{split}$$

・ロン ・回 と ・ ヨン ・ ヨン

The language The type-system Type inference

Result

$$\mathsf{op}:eta o ((\epsilon_3,\epsilon_3') o \epsilon_3'') o \gamma_2'$$

with

$$\begin{split} \epsilon_3 &= \text{Matrix}, \text{Vector} < \text{Vector} < \text{Integer} >> \\ \beta &< t_m < t_2 < \epsilon_1' < \epsilon_2' < \epsilon_3' \\ \epsilon_3'' < \epsilon_2'' < \epsilon_1'' < t_3 < t_{f(\textit{this},m)} < \gamma_1' < \gamma_2' \\ \end{split}$$
This is a well-typing.

 $\begin{array}{l} \textbf{Compare to the goal:} \\ \texttt{Matrix} \rightarrow ((\texttt{Matrix},\texttt{Matrix}) \rightarrow \texttt{Matrix}) \rightarrow \texttt{Matrix} \end{array}$

The well-typing is more principal.

・ロン ・回 と ・ ヨ と ・ ヨ と

The language The type-system Type inference

Conclusion and future work

Conclusion

- Type inference algorithm for Java 5
- Principal types are intersection types
- ► Fuh and Mishra's type inference algorithm could be adopt to Java 7.

<ロ> (日) (日) (日) (日) (日)

The language The type-system Type inference

Conclusion and future work

Conclusion

- Type inference algorithm for Java 5
- Principal types are intersection types
- ► Fuh and Mishra's type inference algorithm could be adopt to Java 7.

Future work

- Improve the type inference algorithm for Java 5, such that only principal types are inferred
- Integrate well typings into Java 7
- Implementation:
 - Code-generation for intersection types
 - Adopted Fuh and Mishra algorithm

- 4 回 ト - 4 回 ト - 4 回 ト