
Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Typeless Programming in Java 5 and 7

Martin Plümicke

Baden-Württemberg Cooperative State University
Stuttgart/Horb

20. September 2010

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Overview

Introduction

Type inference algorithm for Java 5
Types
Type unification
Type inference algorithm

Java with intersection types
First approach
The algorithm

Closures in Java 7
The language
The type-system
Type inference

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Introduction

Extensions of the Java type–system
I parametrized types, type variables, type terms, wildcards

e.g.

Vector<? extends AbstractList<? super Integer>>

Complex typings
I Often it is not obvious, which are the best types for methods and

variables

I Sometimes principal types in Java are intersection types, which are
not expressible (contradictive of writing re-usable code)

=⇒ Developing a type–inference–system, which determines principal types

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Introduction

Extensions of the Java type–system
I parametrized types, type variables, type terms, wildcards

e.g.

Vector<? extends AbstractList<? super Integer>>

Complex typings
I Often it is not obvious, which are the best types for methods and

variables

I Sometimes principal types in Java are intersection types, which are
not expressible (contradictive of writing re-usable code)

=⇒ Developing a type–inference–system, which determines principal types

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Introduction

Extensions of the Java type–system
I parametrized types, type variables, type terms, wildcards

e.g.

Vector<? extends AbstractList<? super Integer>>

Complex typings
I Often it is not obvious, which are the best types for methods and

variables

I Sometimes principal types in Java are intersection types, which are
not expressible (contradictive of writing re-usable code)

=⇒ Developing a type–inference–system, which determines principal types

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Example: Multiplication of matrices

class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Matrix m) {

Matrix ret = new Matrix();

int i = 0;

while(i <size()) {
Vector<Integer> v1 = this.elementAt(i);

Vector<Integer> v2 = new Vector<Integer>();

int j = 0;

while(j < size()) {
int erg = 0;

int k = 0;

while(k < v1.size()) {
erg = erg + v1.elementAt(k)

* m.elementAt(k).elementAt(j); k++; }
v2.addElement(new Integer(erg)); j++; }

ret.addElement(v2); i++; }
return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Alternative Typing

class Matrix extends Vector<Vector<Integer>> {
Matrix/Vector<Vector<Integer>> mul(Matrix/Vector<Vector<Integer>> m) {

Matrix/Vector<Vector<Integer>> ret = new Matrix();

int i = 0;

while(i <size()) {
Vector<Integer> v1 = this.elementAt(i);

Vector<Integer> v2 = new Vector<Integer>();

int j = 0;

while(j < size()) {
int erg = 0;

int k = 0;

while(k < v1.size()) {
erg = erg + v1.elementAt(k)

* m.elementAt(k).elementAt(j); k++; }
v2.addElement(new Integer(erg)); j++; }

ret.addElement(v2); i++; }
return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

Purpose: Typless

class Matrix extends Vector<Vector<Integer>> {
mul(m) {

ret = new Matrix();

i = 0;

while(i <size()) {
v1 = this.elementAt(i);

v2 = new Vector<Integer>();

j = 0;

while(j < size()) {
erg = 0;

k = 0;

while(k < v1.size()) {
erg = erg + v1.elementAt(k)

* m.elementAt(k).elementAt(j); k++; }
v2.addElement(new Integer(erg)); j++; }

ret.addElement(v2); i++; }
return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7
Introduction

System determines the principal typing(s)

mul: Matrix → Matrix &
Matrix→ Vector<Vector<Integer>>
& . . .&
Vector<? extends Vector<? extends Integer>>

→ Vector<? super Vector<Integer>>

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type inference algorithm for Java 52

The Idea

Hindley/Milner Type inference [Damas, Milner 1982]1

– function type constructor → (no higher–order functions)

+ function template (ty1 × . . . tyn) → ty0

(first–order functions)

+ subtyping

+ data and function polymorphism (overloading)

1L. Damas, R. Milner. Principal type-schemes for functional programs.
2M. Plümicke. Typeless Programming in Java 5.0 with wildcards. PPPJ 2007

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Simple types STypeTS(BTV)

I BTV (ty) ⊆ STypeTS(BTV) (bounded type variables)
I TC () ⊆ STypeTS(BTV) (0-ary type constructors/classes)
I For tyi ∈ STypeTS(BTV)

∪{ ? }
∪ { ? extends τ | τ ∈ STypeTS(BTV) }
∪ { ? super τ | τ ∈ STypeTS(BTV) }

and C ∈ TC (a1|b1
...an|bn) it holds

C<ty1, . . . , tyn> ∈ STypeTS(BTV)

if for CC (C<ty1, . . . , tyn>) = C<ty1, . . . , tyn> holds:

tyi ≤∗ bi [aj 7→ tyj | 16 j 6n],

where
I CC (. . .) denotes the capture conversion
I ≤∗ is the subtyping ordering.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Abbreviation for wildcard–types

Instead of A<? extends B> we write

A<?B>

and instead of C<? super D> we write

C<?D>.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Subtyping ordering ≤∗

Reflexive and transitive closure of
I if θ extends θ′ then θ≤∗ θ′.
I if θ1≤∗ θ2 then σ1(θ1)≤∗ σ2(θ2), where for each type variable a of

θ2 holds σ1(a)=σ2(a)∈ STypeTS(BTV) (soundness condition).
I a≤∗ θ′ for a ∈ BTV (θ1&...&θn) where ∃θi : θi ≤∗ θ′.
I It holds C<θ1, . . . , θn>≤∗ C<θ′

1, . . . , θ′
n> if for θi and θ′

i either

I θi = ?θi , θ′
i = ?θ

′
i and θi ≤∗ θ

′
i or

I θi = ?θi , θ′
i = ?θ

′
i and θ

′
i ≤∗ θi or

I θi , θ
′
i are no wildcard arguments and θi = θ′

i or
I θ′

i = ?θi or
I θ′

i = ?θi

I From C<θ1, . . . , θn>≤∗ C<θ′
1, . . . , θ′

n> follows with C<θ1, . . . , θn>
= CC (C<θ1, . . . , θn>): C<θ1, . . . , θn>≤∗ C<θ′

1, . . . , θ′
n>

I T |(θ1&...&θn)≤∗ θi for any 16 i 6n.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type unification [Pluemicke 2009]3

Subtyping relation for type terms: ≤∗

Type Unification problem:
For two type terms θ1 and θ2 a substitution σ is demanded
such that:

σ(θ1)≤∗ σ(θ2).

Base: Unification algorithm [Martelli, Montanari 1982]4

3M. Pluemicke. Java type unification with wildcards, INAP 07. LNAI 5437.
4A. Martelli, U. Montanari. An efficient unification algorithm.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example

Subtyping relation:
Integer≤∗ Number
Stack<a>≤∗ Vector<a>≤∗ AbstractList<a>≤∗ List<a>

Application of the algorithm:
{ (Stack<a> l Vector<?Number>), (AbstractList<Integer> l List<a>) }

=⇒{ al? ?Number, Integerl? a }
=⇒{ { a .

= ?Number, a
.
= Integer }, { a .

= ?Number, a
.
= ?Number },

{ a .
= ?Number, a

.
= ?Integer }, { a

.
= ?Number, a

.
= ?Integer },

{ a .
= Number, a

.
= Integer }, { a .

= Number, a
.
= ?Number },

{ a .
= Number, a

.
= ?Integer }, { a

.
= Number, a

.
= ?Integer },

{ a .
= ?Integer, a

.
= Integer }, { a .

= ?Integer, a
.
= ?Number },

{ a .
= ?Integer, a

.
= ?Integer }, { a

.
= ?Integer, a

.
= ?Integer },

{ a .
= Integer, a

.
= Integer }, { a .

= Integer, a
.
= ?Number },

{ a .
= Integer, a

.
= ?Integer }, { a

.
= Integer, a

.
= ?Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example

Subtyping relation:
Integer≤∗ Number
Stack<a>≤∗ Vector<a>≤∗ AbstractList<a>≤∗ List<a>

Application of the algorithm:
{ (Stack<a> l Vector<?Number>), (AbstractList<Integer> l List<a>) }

=⇒{ al? ?Number, Integerl? a }
=⇒{ { a .

= ?Number, a
.
= Integer }, { a .

= ?Number, a
.
= ?Number },

{ a .
= ?Number, a

.
= ?Integer }, { a

.
= ?Number, a

.
= ?Integer },

{ a .
= Number, a

.
= Integer }, { a .

= Number, a
.
= ?Number },

{ a .
= Number, a

.
= ?Integer }, { a

.
= Number, a

.
= ?Integer },

{ a .
= ?Integer, a

.
= Integer }, { a .

= ?Integer, a
.
= ?Number },

{ a .
= ?Integer, a

.
= ?Integer }, { a

.
= ?Integer, a

.
= ?Integer },

{ a .
= Integer, a

.
= Integer }, { a .

= Integer, a
.
= ?Number },

{ a .
= Integer, a

.
= ?Integer }, { a

.
= Integer, a

.
= ?Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example

Subtyping relation:
Integer≤∗ Number
Stack<a>≤∗ Vector<a>≤∗ AbstractList<a>≤∗ List<a>

Application of the algorithm:
{ (Stack<a> l Vector<?Number>), (AbstractList<Integer> l List<a>) }

=⇒{ al? ?Number, Integerl? a }

=⇒{ { a .
= ?Number, a

.
= Integer }, { a .

= ?Number, a
.
= ?Number },

{ a .
= ?Number, a

.
= ?Integer }, { a

.
= ?Number, a

.
= ?Integer },

{ a .
= Number, a

.
= Integer }, { a .

= Number, a
.
= ?Number },

{ a .
= Number, a

.
= ?Integer }, { a

.
= Number, a

.
= ?Integer },

{ a .
= ?Integer, a

.
= Integer }, { a .

= ?Integer, a
.
= ?Number },

{ a .
= ?Integer, a

.
= ?Integer }, { a

.
= ?Integer, a

.
= ?Integer },

{ a .
= Integer, a

.
= Integer }, { a .

= Integer, a
.
= ?Number },

{ a .
= Integer, a

.
= ?Integer }, { a

.
= Integer, a

.
= ?Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example

Subtyping relation:
Integer≤∗ Number
Stack<a>≤∗ Vector<a>≤∗ AbstractList<a>≤∗ List<a>

Application of the algorithm:
{ (Stack<a> l Vector<?Number>), (AbstractList<Integer> l List<a>) }

=⇒{ al? ?Number, Integerl? a }
=⇒{ { a .

= ?Number, a
.
= Integer }, { a .

= ?Number, a
.
= ?Number },

{ a .
= ?Number, a

.
= ?Integer }, { a

.
= ?Number, a

.
= ?Integer },

{ a .
= Number, a

.
= Integer }, { a .

= Number, a
.
= ?Number },

{ a .
= Number, a

.
= ?Integer }, { a

.
= Number, a

.
= ?Integer },

{ a .
= ?Integer, a

.
= Integer }, { a .

= ?Integer, a
.
= ?Number },

{ a .
= ?Integer, a

.
= ?Integer }, { a

.
= ?Integer, a

.
= ?Integer },

{ a .
= Integer, a

.
= Integer }, { a .

= Integer, a
.
= ?Number },

{ a .
= Integer, a

.
= ?Integer }, { a

.
= Integer, a

.
= ?Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example cont.

=⇒
{{ Integer .

= ?Number, a
.
= Integer }, { ?Number

.
= ?Number, a

.
= ?Number },

{ ?Integer
.
= ?Number, a

.
= ?Integer }, { ?Integer

.
= ?Number, a

.
= ?Integer },

{ Integer .
= Number, a

.
= Integer }, { ?Number

.
= Number, a

.
= ?Number },

{ ?Integer
.
= Number, a

.
= ?Integer }, { ?Integer

.
= Number, a

.
= ?Integer },

{ Integer .
= ?Integer, a

.
= Integer }, { ?Number

.
= ?Integer, a

.
= ?Number },

{ ?Integer
.
= ?Integer, a

.
= ?Integer },

{ ?Integer
.
= ?Integer, a

.
= ?Integer },

{ Integer .
= Integer, a

.
= Integer }, { ?Number

.
= Integer, a

.
= ?Number },

{ ?Integer
.
= Integer, a

.
= ?Integer }{ ?Integer

.
= Integer, a

.
= ?Integer } }

=⇒ {{ a 7→ ?Number }, { a 7→ ?Integer }, { a 7→ Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example cont.

=⇒
{{ Integer .

= ?Number, a
.
= Integer }, { ?Number

.
= ?Number, a

.
= ?Number },

{ ?Integer
.
= ?Number, a

.
= ?Integer }, { ?Integer

.
= ?Number, a

.
= ?Integer },

{ Integer .
= Number, a

.
= Integer }, { ?Number

.
= Number, a

.
= ?Number },

{ ?Integer
.
= Number, a

.
= ?Integer }, { ?Integer

.
= Number, a

.
= ?Integer },

{ Integer .
= ?Integer, a

.
= Integer }, { ?Number

.
= ?Integer, a

.
= ?Number },

{ ?Integer
.
= ?Integer, a

.
= ?Integer },

{ ?Integer
.
= ?Integer, a

.
= ?Integer },

{ Integer .
= Integer, a

.
= Integer }, { ?Number

.
= Integer, a

.
= ?Number },

{ ?Integer
.
= Integer, a

.
= ?Integer }{ ?Integer

.
= Integer, a

.
= ?Integer } }

=⇒ {{ a 7→ ?Number }, { a 7→ ?Integer }, { a 7→ Integer } }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The language Javacore

Source := class∗
class := Class(stype, [extends(stype),]IVarDecl∗,Method∗)
IVarDecl := InstVarDecl(stype, var)
Method := Method(mname, [stype], (var [, stype])∗, block)
block := Block(stmt∗)
stmt := block | Return(expr) | While(bexpr , block)

| LocalVarDecl(var [, stype]) | If(bexpr , block[, block])
| stmtexpr

stmtexpr := Assign(var , expr) | New(stype, expr∗)
| MethodCall([expr ,]f , expr∗)

expr := stmtexpr | this | super
| LocalOrFieldVar(var) | InstVar(expr , var)
| bexp | sexp

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

The algorithm

Type assumptions: For each absent type in the program a
type-placeholder (fresh type variable) is assumed.

Run over the abstract syntax tree: During the run over the abstract
syntax tree of the coresponding java class the types are calculated
gradually by type unification.

Multiplying the assumptions: If the result of a type unification contains
more than one result or if there is data polymorphism, the set of
type assumptions is multiplied.

Erase type assumptions: If the type unification fails, the corresponding
set of type assumptions is erased.

New method type parameters: At the end remained type-placeholders
are replaced by new introduced method type parameters.

Intersection types: At the end each remained set of type assumptions
forms one element of the result’s intersection type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Example: Multiplication of matrices: Type assumptions

class Matrix extends Vector<Vector<Integer>> {
{α } mul({β } m) {

{ γ } ret = new Matrix();

int i = 0;

while(i <size()) {
{ ι } v1 = this.elementAt(i);

{κ } v2 = new Vector<Integer>();

int j = 0;

while(j < size()) {
{χ } erg = 0;

int k = 0;

while(k < v1.size()) {
erg = erg + ({ ξ }({ ι } v1).elementAt(k))

* ({ψ }({φ } ({β } m).elementAt(k)).elementAt(j)); k++;}
v2.addElement({χ } erg); j++; }

ret.addElement({µ } v2); i++; }
return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

ret = new Matrix ()

{α } mul({β } m) {
{ γ } ret = { Matrix } new Matrix();
. . .
return { γ } ret;

}

Unification: Matrix l γ

⇒
γ = Matrix
γ = Vector<Vector<Integer>>
γ = Vector<?Vector<Integer>>
γ = Vector<?Vector<?Integer>>
γ = Vector<?Vector<

?Integer>>
γ = Vector<?Vector<Integer>>

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Type assumptions after the first unification

class Matrix extends Vector<Vector<Integer>> {
{α, α, α, α, α, α } mul({β, β, β, β, β, β } m) {

{ Matrix, Vector<Vector<Integer>>, Vector<?Vector<Integer>>,
Vector<?Vector<?Integer>>, Vector<?Vector<

?Integer>>,
Vector<?Vector<Integer>> } ret = new Matrix();

int i = 0; while(i <size()) {
{ ι, ι, ι, ι, ι, ι } v1 = this.elementAt(i);

{κ, κ, κ, κ, κ, κ } v2 = new Vector<Integer>();

int j = 0; while(j < size()) {
{χ, χ, χ, χ, χ, χ } erg = 0;

int k = 0; while(k < v1.size()) {
erg = erg +({ ξ, ξ, ξ, ξ, ξ, ξ }({ ι, ι, ι, ι, ι, ι } v1).elementAt(k))

* ({ψ,ψ, ψ, ψ, ψ, ψ }
({φ, φ, φ, φ, φ, φ }
({β, β, β, β, β, β } m).elementAt(k)).elementAt(j)); k++;}

v2.addElement({χ, χ, χ, χ, χ, χ } erg); j++; }
ret.addElement({µ, µ, µ, µ, µ, µ } v2); i++; }

return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

v1 = this.elementAt(i);

{α } mul({β } m) {
. . .
{ ι } v1 = ({ Matrix } this).elementAt(i);
. . .

}

Unification: Matrix l Vector<ι>

⇒

ι = Vector<Integer>
ι = Vector<?Integer>
ι = Vector<?Integer>

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

return ret;

{α } mul({β } m) {
. . .
return { γ } ret;

}
Unification: γ l α for
γ = Matrix
γ = Vector<Vector<Integer>>
γ = Vector<?Vector<Integer>>

Result: α = Matrix
α = Vector<Vector<Integer>>
α = Vector<?Vector<Integer>>
α = Vector<?Vector<Integer>>
α = Vector<?Vector<?Integer>>
α = Vector<?Vector<

?Integer>>

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Result:

mul: &β,α(β→α),

where

β≤∗ Vector<?Vector<?Integer>>,
Matrix≤∗ α

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Implementation

I Overloading–Example

I Return–Example

I Matrix–Example

Purpuse: Byte-code generation for methods with intersection types

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

Types
Type unification
Type inference algorithm

Implementation

I Overloading–Example

I Return–Example

I Matrix–Example

Purpuse: Byte-code generation for methods with intersection types

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Code generation for method with intersection types5

I Byte-code allows no intersection types

I First approach: generate for each element of the intersection type an
own method

5M. Pluemicke, Intersection types in java. PPPJ 2008.
Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: class OL I

class OL {
Integer m(x) { return x + x; } //Integer → Integer
Boolean m(x) { return x || x; } //Boolean → Boolean

}

class Main {
main(x) { // Integer → Integer & Boolean → Boolean

ol;
ol = new OL();
return ol.m(x);

}
}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: class OL II

Result for Main:

class Main {
Integer main(Integer x) {

OL ol;
ol = new OL();
return ol.m(x); }

Boolean main(Boolean x) {
OL ol;
ol = new OL();
return ol.m(x);

}
}

Java program is correct

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: class OL II

Result for Main:

class Main {
Integer main(Integer x) {

OL ol;
ol = new OL();
return ol.m(x); }

Boolean main(Boolean x) {
OL ol;
ol = new OL();
return ol.m(x);

}
}

Java program is correct

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: Multiplication of matrices

mul: &β,α(β→α),
where

β≤∗ Vector<? extends Vector<? extends Integer>>,
Matrix≤∗ α

class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
Matrix mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... }

Not a correct Java program

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: Multiplication of matrices

mul: &β,α(β→α),
where

β≤∗ Vector<? extends Vector<? extends Integer>>,
Matrix≤∗ α

class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
Matrix mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... }

Not a correct Java program

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example: Multiplication of matrices

mul: &β,α(β→α),
where

β≤∗ Vector<? extends Vector<? extends Integer>>,
Matrix≤∗ α

class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
Matrix mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
. . .
Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... }

Not a correct Java program

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Group elements of the intersection type

Idea:
1. Group all elements which

I executes the same code
I have a common subtype

2. Generate new methods only for the groups

Code–execution: Callgraph of the method declarations

CG(cl .m : τ)

Callgraph of the method m in the class cl with the typing τ .

Subtype of function types: Subtyping ordering
θi ≤∗ θ′

i , θ≤∗ θ′ ⇒

θ′
1 × . . .× θ′

n → θ≤∗ θ1 × . . .× θn → θ′

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Group elements of the intersection type

Idea:
1. Group all elements which

I executes the same code
I have a common subtype

2. Generate new methods only for the groups

Code–execution: Callgraph of the method declarations

CG(cl .m : τ)

Callgraph of the method m in the class cl with the typing τ .

Subtype of function types: Subtyping ordering
θi ≤∗ θ′

i , θ≤∗ θ′ ⇒

θ′
1 × . . .× θ′

n → θ≤∗ θ1 × . . .× θn → θ′

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Group elements of the intersection type

Idea:
1. Group all elements which

I executes the same code
I have a common subtype

2. Generate new methods only for the groups

Code–execution: Callgraph of the method declarations

CG(cl .m : τ)

Callgraph of the method m in the class cl with the typing τ .

Subtype of function types: Subtyping ordering
θi ≤∗ θ′

i , θ≤∗ θ′ ⇒

θ′
1 × . . .× θ′

n → θ≤∗ θ1 × . . .× θn → θ′

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class OL I

Callgraph

CG(Main.main : Integer→ Integer) CG(Main.main : Boolean→ Boolean)

= =
Main.main: Integer−>Integer

& Boolean −> Boolean

OL.m: Integer −> Integer

Main.main: Integer−>Integer
& Boolean −> Boolean

Ol.m: Boolean −> Boolean

Subtype
Integer→ Integer Boolean→ Boolean

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class OL I

Callgraph

CG(Main.main : Integer→ Integer) CG(Main.main : Boolean→ Boolean)

= =
Main.main: Integer−>Integer

& Boolean −> Boolean

OL.m: Integer −> Integer

Main.main: Integer−>Integer
& Boolean −> Boolean

Ol.m: Boolean −> Boolean

Subtype
Integer→ Integer Boolean→ Boolean

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class OL II

Code generation

class Main {
Integer main(Integer x) {

OL ol;
ol = new OL();
return ol.m(x); }

Boolean main(Boolean x) {
OL ol;
ol = new OL();
return ol.m(x);

} }

Code is unchanged in comparison to the first approach

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class Matrix I

Callgraph CG(Matrix.mul : τ) for all τ

?Matrix.mul: Vector< Vector< Int>> −> Matrix & ?
Vector< Vector<Int>> −> Matrix &?

Matrix −> Vector< Vector< Int>> ? ?

& ... &

Vector<T>.addElement: T −> void Vector<T>.size:−> int Vector<T>.elementAt: int −> T

Subtype:

Vector<? extends Vector<? extends Integer>>→ Matrix

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class Matrix I

Callgraph CG(Matrix.mul : τ) for all τ

?Matrix.mul: Vector< Vector< Int>> −> Matrix & ?
Vector< Vector<Int>> −> Matrix &?

Matrix −> Vector< Vector< Int>> ? ?

& ... &

Vector<T>.addElement: T −> void Vector<T>.size:−> int Vector<T>.elementAt: int −> T

Subtype:

Vector<? extends Vector<? extends Integer>>→ Matrix

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Example class Matrix II

Code generation (only one method!)

Matrix mul(Vector<? extends Vector<? extends Integer>> m) {
Matrix ret = new Matrix();
int i = 0;
while(i <size()) {

Vector<Integer> v1 = this.elementAt(i);
Vector<Integer> v2 = new Vector<Integer>();
int j = 0;
while(j < size()) {

int erg = 0;
int k = 0;
while(k < v1.size()) { erg = erg + ...; k++; }
v2.addElement(new Integer(erg)); j++; }

ret.addElement(v2); i++; }
return ret; }}

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

The algorithm

Input: A Java program p with inferred (intersection) types.

Output: A Java program p′, where the methods have standard Java
types. The semantics of p and p′ are equal.

1. Step: For every class cl in p consider for each method m the
intersection type tym:

I Build the callgraph CG(cl .m : τ) for each function type τ of
the intersection type tym.

I Group all elements τ of tym, where CG(cl .m : τ) is the same
graph and there is a subtype.

2. Step: Determine the subtype of the respective group.

3. Step: Generate for each group of function types the corresponding
Java code with the subtype as standard typing in p′.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

The algorithm

Input: A Java program p with inferred (intersection) types.

Output: A Java program p′, where the methods have standard Java
types. The semantics of p and p′ are equal.

1. Step: For every class cl in p consider for each method m the
intersection type tym:

I Build the callgraph CG(cl .m : τ) for each function type τ of
the intersection type tym.

I Group all elements τ of tym, where CG(cl .m : τ) is the same
graph and there is a subtype.

2. Step: Determine the subtype of the respective group.

3. Step: Generate for each group of function types the corresponding
Java code with the subtype as standard typing in p′.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

The algorithm

Input: A Java program p with inferred (intersection) types.

Output: A Java program p′, where the methods have standard Java
types. The semantics of p and p′ are equal.

1. Step: For every class cl in p consider for each method m the
intersection type tym:

I Build the callgraph CG(cl .m : τ) for each function type τ of
the intersection type tym.

I Group all elements τ of tym, where CG(cl .m : τ) is the same
graph and there is a subtype.

2. Step: Determine the subtype of the respective group.

3. Step: Generate for each group of function types the corresponding
Java code with the subtype as standard typing in p′.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Principal Typing

Definition [Damas, Milner 1982]:

“A type-scheme for a declaration is a principal type-scheme, if any other
type-scheme for the declaration is a generic instance of it.”

Generalized definition for Java:

“An intersection type-scheme for a declaration is a principal type-scheme,
if any (non–intersection) type-scheme θ for the declaration is a supertype
of a generic instance of one element of the intersection type-scheme τ
and θ and τ have the same callgraph.”

This refined definition guarantees, that for each method, which is
generated by the resolving algorithm, at least one typing is contained in
the principal type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Principal Typing

Definition [Damas, Milner 1982]:

“A type-scheme for a declaration is a principal type-scheme, if any other
type-scheme for the declaration is a generic instance of it.”

Generalized definition for Java:

“An intersection type-scheme for a declaration is a principal type-scheme,
if any (non–intersection) type-scheme θ for the declaration is a supertype
of a generic instance of one element of the intersection type-scheme τ
and θ and τ have the same callgraph.”

This refined definition guarantees, that for each method, which is
generated by the resolving algorithm, at least one typing is contained in
the principal type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Principal Typing

Definition [Damas, Milner 1982]:

“A type-scheme for a declaration is a principal type-scheme, if any other
type-scheme for the declaration is a generic instance of it.”

Generalized definition for Java:

“An intersection type-scheme for a declaration is a principal type-scheme,
if any (non–intersection) type-scheme θ for the declaration is a supertype
of a generic instance of one element of the intersection type-scheme τ
and θ and τ have the same callgraph.”

This refined definition guarantees, that for each method, which is
generated by the resolving algorithm, at least one typing is contained in
the principal type.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Conclusion of Java 5 type inference

Conclusion
I Type inference algorithm for Java 5, which determines intersection

types
I Resolving algorithm of intersection types, which allows to generate

byte code for intersection types
I Principal type property.

Outlook

At the moment: Type inference algorithm infers typings, which are later
erased as supertypes by the resolving algorithm.

Purpuse: Type inference algorithm infers only subtypes, such that no
typings are erased in the resolving algorithm.

Implementation: The resolving algorithm and optimize the type
inference algorithm

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

First approach
The algorithm

Conclusion of Java 5 type inference

Conclusion
I Type inference algorithm for Java 5, which determines intersection

types
I Resolving algorithm of intersection types, which allows to generate

byte code for intersection types
I Principal type property.

Outlook

At the moment: Type inference algorithm infers typings, which are later
erased as supertypes by the resolving algorithm.

Purpuse: Type inference algorithm infers only subtypes, such that no
typings are erased in the resolving algorithm.

Implementation: The resolving algorithm and optimize the type
inference algorithm

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Closures (λ–expressions) in Java 7?

Motivation: Bulk-data APIs like parallel arrays
I parallelism approach: sorting, searching, selection

Example:

public class Student {
String name;
int graduationYear;
double gpa; //grade point average

}

ParallelArray<Student> students
= new ParallelArray<Student>(fjPool, data);

double bestGpa = students.withFilter(isSenior)
.withMapping(selectGpa)
.max();

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Realization by helper objects

static final Ops.Predicate<Student> isSenior
= new Ops.Predicate<Student>() {

public boolean op(Student s) {
return s.graduationYear == Student.THIS_YEAR;

}
};

static final Ops.ObjectToDouble<Student> selectGpa
= new Ops.ObjectToDouble<Student>() {

public double op(Student student) {
return student.gpa;

}
};

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Realization by closures (λ–expressions)

double bestGpa
= students.withFilter(

#(Student s)(s.graduationYear == THIS YEAR))
.withMapping(#(Student s)(s.gpa))
.max();

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Different approaches

I Closures for the Java Programming Language: BGGA
[Bracha, Gafter, Gosling, von der Ahé]

I Concise Instance Creation Expressions: Closures without Complexity:
CICE
[Lee, Lea, Bloch]

I First-class methods: Java-style closures: FCM
[Colebourne, Schulz]

Our approach is following:
Project Lambda6 Java Language Specification draft (Version 0.1.5)

6
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Different approaches

I Closures for the Java Programming Language: BGGA
[Bracha, Gafter, Gosling, von der Ahé]

I Concise Instance Creation Expressions: Closures without Complexity:
CICE
[Lee, Lea, Bloch]

I First-class methods: Java-style closures: FCM
[Colebourne, Schulz]

Our approach is following:
Project Lambda6 Java Language Specification draft (Version 0.1.5)

6
http://mail.openjdk.java.net/pipermail/lambda-dev/attachments/20100212/af8d2cc5/attachment-0001.txt

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Mark Reinhold’s Blog
(Principal Engineer Java SE and OpenJDK)

Two key features are needed:

I A literal syntax, for writing closures, and

I Function types, so that closures are first-class citizens in the type
system.

To integrate closures with the rest of the language and the platform we
need two additional features:

I Closure conversion to implement a single-method interface or
abstract class and

I Extension methods

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

The language Javaλ

Source := class∗
class := Class(stype, [extends(stype),]IVarDecl∗,FunDecl∗)
IVarDecl := InstVarDecl(stype, var)
FunDecl := Fun(fname, [type], lambdaexpr)

block := Block(stmt∗)
stmt := block | Return(expr) | While(bexpr , block)

| LocalVarDecl(var [, type]) | If(bexpr , block[, block])

| stmtexpr
lambdaexpr := Lambda(((var [, type]))∗, (stmt | expr))

stmtexpr := Assign(var , expr) | New(stype, expr∗)
| Eval(expr , expr∗)

expr := lambdaexpr | stmtexpr | this | super
| LocalOrFieldVar(var) | InstVar(expr , var)
| InstFun(expr , fname) | bexp | sexp

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Types TypeTS(BTV)

I STypeTS(BTV) ⊆ TypeTS(BTV)

I For θi ∈ TypeTS(BTV)

θ0 (θ1, . . . , θn) ∈ TypeTS(BTV)

(straw-man syntax, correspond to θ1 × . . .× θn → θ0)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Subtyping–relation

Let ≤∗ be the Java subtyping relation on simple types STypeTS(BTV).

The continuation on TypeTS(BTV) is defined as:

θ0 (θ′
1, . . . , θ′

n)≤∗ # θ′
0 (θ1, . . . , θn) iff θi ≤∗ θ′

i .

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

λ–Abstraction

[lambdastmt]

(O ∪ { xi : θi }, τ, τ ′) BStmt s : θ

(O, τ, τ ′) BExpr Lambda((x1, . . . , xn), s) : # θ (θ1, . . . , θn)

[lambdaexpr]

(O ∪ { xi : θi }, τ, τ ′) BExpr e : θ

(O, τ, τ ′) BExpr Lambda((x1, . . . , xn), e) : # θ (θ1, . . . , θn)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

λ–Abstraction

[lambdastmt]

(O ∪ { xi : θi }, τ, τ ′) BStmt s : θ

(O, τ, τ ′) BExpr Lambda((x1, . . . , xn), s) : # θ (θ1, . . . , θn)

[lambdaexpr]

(O ∪ { xi : θi }, τ, τ ′) BExpr e : θ

(O, τ, τ ′) BExpr Lambda((x1, . . . , xn), e) : # θ (θ1, . . . , θn)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Application

[App]

(O, τ, τ ′) BExpr e : # θ (θ′
1, . . . , θ′

n), (O, τ, τ ′) BExpr ei : θi

(O, τ, τ ′) BExpr Eval(e, e1 . . . en) : θ
θi ≤∗ θ′

i

[InstFun]

(O, τ, τ ′) BExpr re : θ, Oθ BId f : # θ (θ1, . . . , θn)

(O, τ, τ ′) BExpr InstFun(re, f) : # θ (θ1, . . . , θn)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Application

[App]

(O, τ, τ ′) BExpr e : # θ (θ′
1, . . . , θ′

n), (O, τ, τ ′) BExpr ei : θi

(O, τ, τ ′) BExpr Eval(e, e1 . . . en) : θ
θi ≤∗ θ′

i

[InstFun]

(O, τ, τ ′) BExpr re : θ, Oθ BId f : # θ (θ1, . . . , θn)

(O, τ, τ ′) BExpr InstFun(re, f) : # θ (θ1, . . . , θn)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Adapt Fuh and Mishra’s algorithm7.

I Javaλ type system is equivalent

I subtyping, but

I no overloading

I Problem: Fuh and Mishra’s algorithm determines well typings (set
of possibly not unique solvable unequations)

7Y.-C. Fuh, P. Mishra. Type inference with subtypes. ESOP ’88
Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Adapt Fuh and Mishra’s algorithm7.

I Javaλ type system is equivalent

I subtyping, but

I no overloading

I Problem: Fuh and Mishra’s algorithm determines well typings (set
of possibly not unique solvable unequations)

7Y.-C. Fuh, P. Mishra. Type inference with subtypes. ESOP ’88
Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Fuh und Mishra’s algorithm

WTYPE : TypeAssumptions× Expression→ WellTyping + { fail }

TYPE: TypeAssump× Expr→ Type× CoercionSet

Construct the set of coercions by running over the Expression.

MATCH : CoercionSet→ Substitution + { fail }
Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet→ AtomicCoercionSet

Eliminate type constructors, especially the functor and the
tuple-construction

CONSISTENT : AtomicCoercionSet→ Boolean + { fail }
Consistence check, and additionally determination of possible
solutions.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Fuh und Mishra’s algorithm

WTYPE : TypeAssumptions× Expression→ WellTyping + { fail }

TYPE: TypeAssump× Expr→ Type× CoercionSet

Construct the set of coercions by running over the Expression.

MATCH : CoercionSet→ Substitution + { fail }
Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet→ AtomicCoercionSet

Eliminate type constructors, especially the functor and the
tuple-construction

CONSISTENT : AtomicCoercionSet→ Boolean + { fail }
Consistence check, and additionally determination of possible
solutions.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Fuh und Mishra’s algorithm

WTYPE : TypeAssumptions× Expression→ WellTyping + { fail }

TYPE: TypeAssump× Expr→ Type× CoercionSet

Construct the set of coercions by running over the Expression.

MATCH : CoercionSet→ Substitution + { fail }
Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet→ AtomicCoercionSet

Eliminate type constructors, especially the functor and the
tuple-construction

CONSISTENT : AtomicCoercionSet→ Boolean + { fail }
Consistence check, and additionally determination of possible
solutions.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Fuh und Mishra’s algorithm

WTYPE : TypeAssumptions× Expression→ WellTyping + { fail }

TYPE: TypeAssump× Expr→ Type× CoercionSet

Construct the set of coercions by running over the Expression.

MATCH : CoercionSet→ Substitution + { fail }
Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet→ AtomicCoercionSet

Eliminate type constructors, especially the functor and the
tuple-construction

CONSISTENT : AtomicCoercionSet→ Boolean + { fail }
Consistence check, and additionally determination of possible
solutions.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Fuh und Mishra’s algorithm

WTYPE : TypeAssumptions× Expression→ WellTyping + { fail }

TYPE: TypeAssump× Expr→ Type× CoercionSet

Construct the set of coercions by running over the Expression.

MATCH : CoercionSet→ Substitution + { fail }
Extended unification to adopt the structure of the coercions.

SIMPLIFY : CoercionSet→ AtomicCoercionSet

Eliminate type constructors, especially the functor and the
tuple-construction

CONSISTENT : AtomicCoercionSet→ Boolean + { fail }
Consistence check, and additionally determination of possible
solutions.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Adaption to the Javaλ type system

SIMPLIFY: The [Martelli, Montanari 1982] unification is substituted by
the [Pluemicke 2009] type unification8

CONSISTENCE: The functions above and below are substituted by the
functions greater and smaller8, as above and below are not
finite in the Javaλ type system.

8M. Pluemicke. Java type unification with wildcards, INAP 07. LNAI 5437.
Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Example

class Matrix extends Vector<Vector<Integer>> {
//Matrix -> ((Matrix, Matrix) -> Matrix) -> Matrix
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))

}

. . .
public static void main(String[] args) {

Matrix m1 = new Matrix(...);
Matrix m2 = new Matrix(...);
m1.op.(m2).(#(Matrix m1, Matrix m2) {

Matrix ret = new Matrix ();
... //matrice multiplication
return ret;
})

} }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Example

class Matrix extends Vector<Vector<Integer>> {
//Matrix -> ((Matrix, Matrix) -> Matrix) -> Matrix
##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))

}
. . .
public static void main(String[] args) {

Matrix m1 = new Matrix(...);
Matrix m2 = new Matrix(...);
m1.op.(m2).(#(Matrix m1, Matrix m2) {

Matrix ret = new Matrix ();
... //matrice multiplication
return ret;
})

} }

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Goal

Typed syntax:

##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))

Typeless syntax:

op = #(m)(#(f)(f(this, m)))

Goal: The system determines the type

##Matrix(#Matrix(Matrix, Matrix))(Matrix)

automatically.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Goal

Typed syntax:

##Matrix(#Matrix(Matrix, Matrix))(Matrix)
op = #(Matrix m)(#(#Matrix(Matrix, Matrix) f)(f(this, m)))

Typeless syntax:

op = #(m)(#(f)(f(this, m)))

Goal: The system determines the type

##Matrix(#Matrix(Matrix, Matrix))(Matrix)

automatically.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

WTYPE (∅, #(m)(#(f)(f.(this, m)))), (TYPE)

I tm → t#f l top
I tf → tf (this,m) l t#f

I tf l (t1, t2) → t3
I Matrix l t1
I tm l t2
I t3 l tf (this,m)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

WTYPE (∅, #(m)(#(f)(f.(this, m)))), (MATCH)

I tm → ((ε2, ε
′
2) → ε′′2)→ γ′

1 l β → ((ε3, ε
′
3) → ε′′3)→ γ′

2,

(top 7→ β → β′), (t#f 7→ γ1 → γ′
1), (β′ 7→ γ2 → γ′

2),
(γ1 7→ (ε2, ε

′
2) → ε′′2), (γ2 7→ (ε3, ε

′
3) → ε′′3)

I ((ε1, ε
′
1) → ε′′1) → tf (this,m) l ((ε2, ε

′
2) → ε′′2)→ γ′

1

(t#f 7→ γ1 → γ′
1), (tf 7→ (ε1, ε

′
1) → ε′′1), (γ1 7→ (ε2, ε

′
2) → ε′′2)

I (ε1, ε
′
1) → ε′′1 l (t1, t2) → t3

(tf 7→ (ε1, ε
′
1) → ε′′1), (γ1 7→ (ε2, ε

′
2) → ε′′2)

I Matrix l t1
I tm l t2
I t3 l tf (this,m)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

WTYPE (∅, #(m)(#(f)(f.(this, m)))), (SIMPLIFY)

I β l tm,
ε2 l ε3, ε′2 l ε′3, ε′′3 l ε′′2,
γ′

1 l γ′
2

I ε1 l ε2, ε′1 l ε′2, ε′′2 l ε′′1,
tf (this,m) l γ′

1

I t1 l ε1,
t2 l ε′1,
ε′′1 l t3

I Matrix l t1
I tm l t2
I t3 l tf (this,m)

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

WTYPE (∅, #(m)(#(f)(f.(this, m)))), (CONSISTENCE)

It Coercion IMatrix It1 Iε1 Iε2 Iε3 . . .

0 M ∗ ∗ ∗ ∗
1 M l t1 M M, V<V<Int>> ∗ ∗ ∗
1 t1 l ε1 M M, V<V<Int>> M, V<V<Int>> ∗ ∗
1 ε1 l ε2 M M, V<V<Int>> M, V<V<Int>> M, V<V<Int>> ∗
1 ε2 l ε3 M M, V<V<Int>> M, V<V<Int>> M, V<V<Int>> M, V<V<Int>>
1 . . . M M, V<V<Int>> M, V<V<Int>> M, V<V<Int>> M, V<V<Int>>
2 . . . M M, V<V<Int>> M, V<V<Int>> M, V<V<Int>> M, V<V<Int>>

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Result

op : β → ((ε3, ε
′
3) → ε′′3) → γ′

2

with

ε3 = Matrix, Vector<Vector<Integer>>

β l tm l t2 l ε′1 l ε′2 l ε′3

ε′′3 l ε′′2 l ε′′1 l t3 l tf (this,m) l γ′
1 l γ′

2

This is a well-typing.

Compare to the goal:
Matrix→ ((Matrix, Matrix) → Matrix) → Matrix

The well-typing is more principal.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Result

op : β → ((ε3, ε
′
3) → ε′′3) → γ′

2

with

ε3 = Matrix, Vector<Vector<Integer>>

β l tm l t2 l ε′1 l ε′2 l ε′3

ε′′3 l ε′′2 l ε′′1 l t3 l tf (this,m) l γ′
1 l γ′

2

This is a well-typing.

Compare to the goal:
Matrix→ ((Matrix, Matrix) → Matrix) → Matrix

The well-typing is more principal.

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Conclusion and future work

Conclusion

I Type inference algorithm for Java 5

I Principal types are intersection types

I Fuh and Mishra’s type inference algorithm could be adopt to Java 7.

Future work

I Improve the type inference algorithm for Java 5, such that only
principal types are inferred

I Integrate well typings into Java 7
I Implementation:

I Code-generation for intersection types
I Adopted Fuh and Mishra algorithm

Martin Plümicke Typeless Programming in Java 5 and 7

Type inference algorithm for Java 5
Java with intersection types

Closures in Java 7

The language
The type-system
Type inference

Conclusion and future work

Conclusion

I Type inference algorithm for Java 5

I Principal types are intersection types

I Fuh and Mishra’s type inference algorithm could be adopt to Java 7.

Future work

I Improve the type inference algorithm for Java 5, such that only
principal types are inferred

I Integrate well typings into Java 7
I Implementation:

I Code-generation for intersection types
I Adopted Fuh and Mishra algorithm

Martin Plümicke Typeless Programming in Java 5 and 7

	Introduction
	Type inference algorithm for Java 5
	Types
	Type unification
	Type inference algorithm

	Java with intersection types
	First approach
	The algorithm

	Closures in Java 7
	The language
	The type-system
	Type inference

